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Smart Seismic Sensing for Indoor Fall Detection,
Location, and Notification

Jose Clemente , Fangyu Li , Maria Valero , and WenZhan Song

Abstract—This paper presents a novel real-time smart
system performing fall detection, location, and notification
based on floor vibration data produced by fall downs. Only
using floor vibration as the recognition source, the system
incorporates a person identification through vibration pro-
duced by footsteps to inform who is the fallen person. Our
approach operates in a real-time style, which means the sys-
tem recognizes a fall immediately and can identify a person
with only one or two footsteps. A collaborative in-network
location method is used in which sensors collaborate with
each other to recognize the person walking, and more im-
portantly, detect if the person falls down at any moment. We
also introduce a voting system among sensor nodes to im-
prove person identification accuracy. Our system is robust
to identify fall downs from other possible similar events,
such as jumps, door close, and objects fall down. Such
a smart system can also be connected to smart commer-
cial devices (such as Google Home or Amazon Alexa) for
emergency notifications. Our approach represents an ad-
vance in smart technology for elder people who live alone.
Evaluation of the system shows that it is able to detect fall
downs with an acceptance rate of 95.14% (distinguishing
from other possible events), and it identifies people with
one or two steps in a 97.22% (higher accuracy than other
methods that use more footsteps). The fall down location
error is smaller than 0.27 m, which is acceptable compared
with the height of a person.

Index Terms—Fall detection, seismic sensing, person
identification, real-time, in-network system.

I. INTRODUCTION

E LDERY assisted living systems represent an innovative
smart technology useful for detecting emergencies. Per-

son identification and fall detection are essential components in
smart assisted systems that can help to improve people lives.
According to the Center for Disease Control and Prevention,
one out of five falls causes a serious injury such as broken bones
or a head injury [1]. It is clear then, fall detection at home is
a problem that must be addressed in a prompt manner. Fur-
thermore, monitoring the person (by identification) is vital to
diminish emergencies. Even though some solutions for elderly
monitoring are available on the market, most of them are either
body-contact equipment [2] or privacy-invasive devices (like
cameras or similar) [3].
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Fig. 1. System detection and location.

Sensor networks play a key role in fall detection and person
identification. Privacy and comfort are two important issues to
incorporate in the solution. In this paper, we propose a novel
real-time fall detection, location and notification system that
uses floor seismic data produced by fall downs as an only source
for recognition. The system is based on the analysis of structural
vibration where sensors sense floor vibrations, perform in-situ
signal processing, detect fall downs and identify a person. Be-
cause the main source of data comes from floor vibrations, the
sensors are installed on the floor (for example, in the corners
of a room), and there are no cameras or other privacy-invasive
devices. Also, our approach is able to discriminate other events
in the room and differentiate when it is related to a fall down
or a footstep. The system is able to identify a person almost
immediately with only one or two footsteps.

The contributions of our system are summarized as fol-
lows: (i) A real-time system for recognizing people and their
fall downs using structural vibration. Compared with existing
works, which requires post-processing of the data, we are pre-
senting an in-network system that use machine learning models
in real time to provide information (identification and fall detec-
tion) in the same moment that it occurs. Real-time recognition
is accomplished by using a computer unit that executes the al-
gorithms inside each sensor and communication. (ii) A person
identification method that uses optimized features selection and
allows the identification of a person in one or two steps. Pre-
vious works required at least five or more steps for accurate
recognition. (iii) A real-time and in-network location method,
for locating footsteps and fall downs, that does need previous
knowledge of the floor for estimations. We include a simple and
novel calibration method for floor velocity estimation, which
means that unlike other works, we eliminate the assumption of
equal velocity in all parts of the floor. (iv) An in-network voting
system to improve the accuracy of person identification. A sink
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sensor among the ones that detect an event - like a footstep, a fall
down, etc. - is dynamically selected, and it estimates the voting
weights according to the sensed level of energy broadcasted by
each node.

II. RELATED WORKS

Regarding fall down detection, [4] presented a footfall detec-
tion method using seismic signals, which is based on unsuper-
vised learning detection. Authors cluster data to separate noise
and footfall events from an unlabeled dataset using Gaussian
mixture models (GMM). GMM assumes that the features of
both clusters follow a multivariate Gaussian distribution. Even
though they were able to detect steps, their work does not iden-
tify people according to the footstep. Alwan et al. [5] also pre-
sented a fall detection method based on floor vibration. The
works report 100% of accuracy; however, the main analyzed
feature is the amplitude of the signal, and there is not an ex-
plicit comparison with other human activities that have similar
amplitude (example an object drop, jumping, etc.) Respecting
person identification via footsteps using vibration, [6] initially
presents an in-door person identification method where the sys-
tem detects signals induced by footsteps, extracts signal features,
and applies a hierarchical classifier to identify each registered
user. The system takes features from different peoples traces to
generate a classification model using Support Vector Machine
(SVM), which maximizes the distance between data points and
the separating hyperplane. Later, the same group introduced an
indoor pedestrian identification through ambient structural vi-
bration [7]. The authors used an Iterative Transductive Learning
Algorithm (ITSVM) instead of SVM due to the higher identi-
fication accuracy on the low step frequency data. They used a
database with step frequencies to increase the accuracy from
90% to 96%. Also, a threshold discards half of the data to
get high of accuracy, which means that more than 4 steps are
needed to identify a person. Even though ITSVM improves ac-
curacy, the computational time for training and testing is higher
than SVM. Concerning person localization, Poston et al. [8]
presented an indoor footstep location method using accelerom-
eters. They analyzed the influence a building’s structure has on
footsteps sensed by embedded sensors. In this work, the algo-
rithms operate with templates of footstep vibrations and rely on
prior information about sensor coordinates that comes from a
building’s post-construction; the velocity of the floor is assumed
constant at each sensor depending on the building material. In
2018, Mirshekari et al. [9] proposed an occupancy localization
method where there is no need of knowing the floor velocity for
estimating the footstep location; they use a heuristic method to
estimate the velocity and location by assuming the location is
inside some limits. They also use cross-correlation for calculat-
ing the arrival time of the events; however, it is well-known that
the arrival time is more prone to problems due to ambient noise
interference.

Our approach improves the aforementioned work by not only
identifying people based on the footstep analysis, but also de-
tecting when a person falls down, in which location the fall
down occurs, and which person falls down. Also, we do not

Fig. 2. System Architecture. In event classification workflow in the sys-
tem two one-class SVM are used to identify first footsteps. Otherwise,
another SVM is used to classify the event as either fall down or other
events.

assume constant velocity in floor. We want to emphasize that
because our system has been designed for in-situ processing, we
use sensors with a sampling rate of 1000 Hz as it is lighter for
embedded systems and IoT devices. Even though our sampling
rate is smaller than previous work (most of then uses sampling
rates of 20 KHz or higher), our approach is more accurate and
faster as we do not require post-processing.

III. SYSTEM DESIGN

The system is designed based on the floor vibration mea-
sured by smart seismic sensors attached to the floor. Our seismic
sensors are able to measure biometric signatures, like fall downs
and/or footsteps, and collaborate among them to locate the fall
down place without the need of extra sensor devices like cam-
eras. The system architecture is presented in Fig. 2. Every sensor
performs the steps described in the architecture and communi-
cates each other to detect the fall down place in the “localization”
step. In this section, we present the details of each step and the
logical structure of our system.

A. Data Collection

The vibration measured from the structure is gathered by
smart seismic sensors [10]. The detail description of the sensors
is specified in Section IV-A. The three-channel seismometer
used in our sensors has a sampling rate of 1000 Hz which is wide
enough to detect both low and high-frequency components. The
data are recorded in an internal database for further analysis if
needed; however, the fall detection, footstep recognition, and
fall location are done in real time. Then, the sensors in the
network need to be synchronized. The synchronization is done
via a GPS inside each smart unit. The GPS synchronization is
done only the first time the system runs.

B. Signal Enhancing

In any in-door place, there exists background noise due to con-
stant building shaking. This background noise tends to obscure
the different events we need to detect, especially the footsteps.
To enhance the signal, we attempt to remove the background
noise by applying a wavelet denoising technique on the data
to suppress non-stationary noises. The denoised signal using
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Fig. 3. Signal before (left) and after (right) enhancing process.

Fig. 4. Example of our event isolation method based on first-order
second-moment. Solid lines represent the beginnings of events and dot-
ted lines denote the end of events.

wavelet thresholding can be expressed as [11] sd =
∑

j,k∈K
τ(

∫
s(x)ψj,k (x)dx)ψj,k , where, (ψj,k )j,k∈K denotes the or-

thogonal basis of wavelets, τ(·) is the thresholding operator.
The enhanced signal in the time domain is shown in Fig. 3. The
noise has been removed from the recorded data, and it is suitable
for feature extraction.

C. Event Detection and Separation

Once the signal has been enhanced, an event detection tech-
nique is applied to separate the events. Fall downs and footsteps
are considered events. We apply a signal isolation technique to
extract the pulses of footsteps and fall down vibration [12]. This
process is important for future determination whether an event
represents a fall down, a footstep, or something else. Our isola-
tion is different from those used in other works. For example,
in [13], the event detection is based only on the time of arrival
(ToA); the event end time is not considered. We implement an
on-line changing point detection algorithm to find abrupt vari-
ations in data to pick the event. It is based on a probabilistic
method - first-order second-moment method - to determine the
stochastic moments of a signal. The first-order second-moment
method is defined as m2 = 1

N

∑N
i=1 (xi − μ)2 , where μ is the

mean of the distribution, and N is the windows size of the data to
be processed. We use a 50 milliseconds window to find changing
points with low latency. An event starts when the moment m2
is larger than a threshold. We set up the threshold at three times
of the standard deviations of the background noise, which is up-
dated constantly with data that does not come from an event. An
event culminates when m2 is below 1.5 times of the standard
deviation. Fig. 4 illustrates an event detection and separation
example by applying the proposed method.

D. Feature Extraction

The feature extraction procedure is essential for fall down and
footstep characterization. As reported in [14], it is possible to

TABLE I
EVENT FEATURES

Fig. 5. Representation of the extracted features. (a) Time domain fea-
tures. (b) Frequency domain features.

distinguish a human footstep vibration signal from background
noises by selecting the correct features. Different approaches
have been adopted in literature for extracting a set of features
that help to obtain signatures of footsteps. For example, features
extracted from mean vectors and covariance matrices of spec-
tral coefficients were used in [15]; other works use short-term
energy and footstep intervals [16], as well as gait-based informa-
tion as main features for footsteps representation [17]. Because
the vibration and sound pressure responses of human footsteps
in buildings can be broadband and frequency-dependent [18],
and different vibration signatures from different walking styles
can be studied [19], we compute features in both, time and fre-
quency domain. Before obtaining the features, we normalize the
signal events to eliminate the distance effect between the sensor
location and the event location. The normalization is done by
dividing the event by the energy average of its signal, where the
energy is defined as E =

∑N
n=0 |x(n)|2 . We also analyze the

duration of the events and the number of peaks in the time of
data of detection. These features help to improve the score of the
people and detect falls in the studied area. An optimal selection
of the features is also adopted to improve the detection, which
is explained in Section III-H1. Table I shows the characteristics
extracted from the events and the labels used as abbreviations.
Figure 5 shows how to calculate the extracted features in time
and frequency domain.
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Fig. 6. Seismometer-based location system. (a) Seismic sensors co-
operatively calculate the event location. (b) Initial velocity map for cali-
bration purposes of our system.

E. Classification

Precise classification is the main point of our system because
it works based on two types of events; human fall and footsteps.
We use falls to calculate the location and generate an emergency,
and footsteps to identify a person. However, there are many
events in daily life that generate vibrations that are sensed by
our geophones. Many of these events have similar characteristics
which must be selected and classified in order to get human falls
and footsteps. For example, a jump can generate an event that
has an amplitude in time domain similar to that of a fall, but these
can differentiate using the duration time and the number of peaks
in time domain (both are greater in fall events). Similarly, events
such as closing a door, or falling an object have characteristics
like human falls. Other events such as hitting a table or closing
a drawer have similarities with the steps of a person.

We implemented our classification process using a supervised
machine learning algorithm SVM, which transforms the data
using a kernel to find the optimal boundary between the different
classes. The event classification work-flow is presented in Fig. 2.
The inputs are the features extracted from each detected event.
We are using two independent classifiers that are placed in two
layers. The first classifier is to identify if the event is a footstep.
Otherwise, the features are sent to the second layer to identify
if it is a human fall. The event is discarded if it does not belong
to either of these two classes. The footstep classifier is located
at the beginning because it is the most common event present in
our system where more than 90% of the events are footsteps.

Both classifiers were implemented using one-class-SVM to
be able to discard events of which there is no data for their
training. For example, an earthquake is an uncommon event that
can be detected by our system and because it is not a footstep,
or a human fall is discarded by the classifier.

F. Location

The two types of events, fall and footstep, are located by
our system in real-time. The fall location is used to send an
alarm with the position where the event is presented, and the
footstep location is implemented for person identification and
tracking. It allows identifying the person who fell based on the
location of previous steps. Also, it reduces false positives that
may appear far from the person’s location. Fig. 6(a) shows our
seismometer-based location system.

Location techniques require prior knowledge of the propa-
gation speed and the seismometer locations. They also need

several units to detect the event location. We incorporate four
units to reduce the location error margin. In addition, all the
seismometers should be synchronized in time. Since the GPS
accuracy is lower inside a building and the seismometers are
placed too close for the satellite positioning system, we need
first manually setup the relative sensor locations. Then, in the
defined coordinates, a jump synchronization process is applied
to initialize the wave propagation velocity model of the floor.
The process involves jumping twice next to each unit. Then, all
sensors broadcast the arrival time of the event, and the sensor
with the minimum arrival time calculates the speed having the
assumption that the jump was made in its location. After eight
events the sensors generate the floor velocity model. Our cal-
ibration technique allows the estimation of the floor velocity
and eliminates the assumption of constant velocity that previ-
ous works use. The calibration result of our floor is shown in
Fig. 6(b).

We estimate the event location using the time difference
of arrivals (TDOA) between all time-synchronized stationary
sensors sm = [xm , ym ]T , m = 1, . . . ,M to locate where the
event e = (x, y)T ∈ R2 is generated (source). Every single
node determines the event arrival time. τm = t0 + dm

v is the
TDOA for node m, and it is composed for the time when the
event starts t0 and the transmission time between the source
and sensor m. dm =‖ e − sm ‖= √

(x− xm )2 + (y − ym )2 ,
m = 1, . . . ,M , denotes the Euclidean distance between the
source and sensor m, and v is a constant speed.

We propose to use an optimization method to estimate a two-
dimensional position vector. We eliminate the assumption of
constant speed [20] due to the propagation velocity value is not
constant. V is the propagation velocity matrix obtained from
the calibration process. We use Maximum Likelihood (ML)
estimator to calculate the position vector e′ which maximizes
the likelihood function or rather minimizes:

t′ = argmin
t

M∑

i=1

‖ τ̃i − τi ‖, M > 2, (1)

Subject to:

min
sx

≤ x ≤ max
sx

sx ∈ sm [xm]min
sy

≤ y ≤ max
sy

sy ∈ sm [ym]

We use Nelder and Mead as numerical iterative search in a
multidimensional space [21]. The previous event location (step
or fall) is set as the initial points of the algorithm, and if there is
no previous event registered the points are generated randomly
next to the unit with the minimum event arrival time. Based on
our experiments we used a threshold of 1.5 milliseconds as a
stopping criterion.

G. Fall Detection

When the recognized event has been classified as a fall down
(see Section III-E), a system alert is activated to verify if the
event was a real fall down or it is a false positive. The method
used for doing this fall down recognition is described as follows:
(i) a fall down is detected by the classifier; (ii) the area in a
radius of 1.5 meters around the location of the last recognized
step is analyzing; (iii) if the location of the event falls into
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Fig. 7. Feature selection test heat map. (a) Five best accuracy values
of the test , (b) Five worst accuracy values; the last value 76.19↓ stands
for all accuracies below 76.19%.

this area, the system ensure that the recognized event is, in
fact, a fall down. This mechanism improves the accuracy of
the system by eliminating other events that can generate false
positive recognition such as: dropping an object, closing a door
or drawer, hitting a table.

In addition, when the fall down is recognized, an alert is sent
to a smart home device. We use GOOGLE assistant library for
connecting our nodes with this smart device (GOOGLE HOME).
Using this API, the unit sends an internal message to the smart
device that provides an instruction to be completed.

H. Person Recognition

We implement a multi-class-SVM [6] as a supervised clas-
sification algorithm because it provides two main advantages.
First, it has kernels to classify not linearly separable classes. Af-
ter performing several tests with the features from the floor vi-
brations induced by the footsteps, we determine that our classes
are not linearly separable. Second, although SVM is compu-
tationally expensive for training, its search is fast enough to
be implemented on a small device as a single computer board.
The training is done previously in a machine with good com-
putational resource. The multi-class-SVM fits perfectly in the
requirements for our person recognition method.

1) Feature Selection: As shown in Section III-D, we extract
thirteen (13) features from our signals that can be used for train-
ing our multi-class-SVM. Eleven (11) of these features were
used by the state of the art approaches [6], and two (2) were
identified by the authors after analyzing the raw data behav-
ior: F1 (event time duration) and F13 (number of peaks in the
frequency domain). We noticed that some of these features do
not contribute to the classification model to recognize people
with good accuracy. For that reason, we implement a numerical
analysis procedure to determine which features contribute or not
to the model. To do this optimization, we cannot apply linear
regression because our kernel is not linear. Instead, we perform
the following procedure: (i) We use data from 4 subjects to train
the model to avoid over-fitting; to test the model we use new data
from these 4 subjects and we add 2 additional subjects. (ii) We
train and test the model multiple times with different combina-
tions of the features. Our combinations go from C13

5 , C13
6 , C13

7
... to C13

13 where Cx
n means all the combinations of x features

respecting the total n features. (iii) With the accuracy of each
combination, we construct a matrix with x-axis referred to fea-
tures and y-axis referred to accuracy value. Accuracy heat maps
are shown in Fig. 7, colors of which represent the contribution

proportion of the features to obtain the related accuracy. Green
color means major contribution, and red color refers to features
that do not contribute to a specific accuracy value. Fig. 7(a)
shows the top 5 accuracy obtained in the test. It is clear that
features F4 and F8 do not contribute in a large proportion to ob-
tain these values. While the two features included, F1 and F13,
add information to the SVM model in more than 80% of the
cases. In contrast, Fig. 7(b) shows the lower accuracy obtained.
In the same way, features F4 and F8 are contributing in more
than 70% of cases to obtain these low accuracy. The remark of
this optimization test is to remove characteristics F4 and F8 and
keep the new two features (F1 and F13). We improve the more
than 5% accuracy by the aforementioned procedure.

2) Decision Making: The four units used to locate the event
work together to recognize people through the floor vibrations
induced by footsteps. The energy signal is different in each unit
because the signal degrades during transmission. Normally, the
unit closest to the event source is the unit with the highest
energy event. The signal degradation causes that some events
do not have the correct features for recognizing a person. It
produces false positives reducing the system accuracy. For this
reason, we make a weighted collaborative decision making or
weighted voting system (WVS). The weights are based on the
energy event, and the amount of units who detect the event. This
method adapts dynamically to any number of units incorporated
into the system. After the individual person recognition, each
unit broadcasts the event energy and the person id number in
the tuple Φi = [Ei ,Pi ] where i = 1, . . . ,M .

Just the unit with the highest event energy calculates and
identifies the person. We use a weighted voting decision making,
in which the weight is calculated as ωi = Ei∑M

j = 1 Ej .

The selection is then calculated based on the weights obtained
by each identified person represented as a subsetH ⊂P without
duplication.

∑|H |
j=1

∑M
i=1 Sj = ωi ∀Hj = Pi where |H| is the

size of the subset H (e.g. if there are 5 people identified by
different unit in the process; then N = 5). The selected person
is Hx where x is the index of the maximum value in S. Due to
the algorithm needs two footsteps to make the final selection,
the ids and weights of the two people with greater value in S are
broadcasted. This information is used for the next sink unit to
make the final selection. It is done by accumulating the voting
values of the two iterations and selecting the greatest. After the
recognition, the unit communicates the person name to the smart
assistant which is in charge of issuing a greeting message, e.g.
“Hello Adam”.

IV. EXPERIMENTS AND VALIDATION

In this section, we describe the details of the experiments
conducted with our in-network footstep and fall detection sys-
tem. Instead of using simulated data, we use real devices and
a seismic testbed to validate our methods. First, we present the
hardware for testing our system, and then, the results of each
step (fall detection, fall location, person identification) are pre-
sented. A discussion of the results is also provided at the end of
the section.
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Fig. 8. Hardware and testbed. (a) Sensor unit hardware description.
Visible at the picture: a battery, a seismometer and a boxed pervasive
computing unit. (b) Testbed for the fall down/footstep recognition system.

A. Hardware and Software Setup

We use real sensor units for our experiments. Each unit has a
three-channel seismometer, a single computer board (Raspberry
Pi 3) [22], a lithium battery as shown in Fig. 8(a). The three-
channel seismometer detects the velocity of ground movements.
Each channel records its own data with respect to its axis X, Y,
and Z, which correspond to directions North, East, and Depth.
The single-board computer (Raspberry Pi) collects, stores, pro-
cesses and communicates data. The nodes and the smart device
are integrated into a mesh network for communication purposes.

Originally, the hardware was conceived for outdoor experi-
ments [23], [24]; however, its characteristic makes it suitable
for our indoor purposes. Currently, we are working toward the
design of smaller hardware with the same features for indoor
purposes.

The software inside each unit is developed using PYTHON

[25]. We save data inside each unit using INFLUXDB [26]
database that is suitable for time series monitoring and analytics.
The data also is synchronized to a central server for visualization
purposes. Results of arrival time and event location (fall downs
and footsteps) are also saved using INFLUXDB. The visualiza-
tion is done using GRAFANA [27]. On the other hand, for SVM
purposes, we use the library SCIKIT-LEARN [28]. Two types of
SVM are used: (i) one-class SVM to distinguish between foot-
steps/fall downs and other events, and (ii) a multi-class SVM to
differentiate different people. The SVM uses a 2nd degree poly
kernel with a penalty parameter C of the error term established
in 100.

Our seismic testbed consists of four sensors deployed in an
area of 380 square feet approximately.

We design a Graphic User Interface (GUI) to visualize the
fall down and footstep location. Fig. 8(b) shows an overview of
our testbed and the four units deployed on the corners.

B. Validation

The k-fold cross-validation procedure is applied to evaluate
the classification model. We use it to estimate how the model
is expected to perform in general when it makes predictions on
data not used during the training of the model. The procedure
splits the data into k groups and for each group, it (i) takes one as
a test data set (ii) takes the remainder as a training data set (iii)

Fig. 9. Receiver Operating Characteristic (ROC) of the cross-validation
procedure using 8 folds.

TABLE II
CLASSIFIERS COMPARISON FOOTSTEPS OF 6 PEOPLE. FIVE RASPBERRY

PIS WERE USED TO OBTAIN THE AVERAGE TIMES

fits and evaluates the model (iv) retains the evaluation score. We
select 8-folds to cross-validate the model. We use AUC (Area
Under The Curve) ROC (Receiver Operating Characteristics)
to check and visualize the performance of our classification
problem. ROC is a probability curve, and AUC represents the
degree or measure of separability. They tell how much model is
capable of distinguishing between classes. An excellent model
has AUC near to the 1, which means it has a good measure of
separability. Fig. 9 shows the AUC for all folds and the AUC
average of 0.86.

C. Classifiers Comparison

To choose the correct classifier that obtains high levels of
accuracy and to have the ability to adapt to the limited com-
puting resources of the single board, we evaluate the accuracy
and runtime of three different classifiers using 100 steps of 6
subjects. The classifiers used in the process are Gaussian Pro-
cess (GP), K-Nearest Neighbors (KNN) and SVM. The data
is split on 80 percent for training and 20 percent for testing.
The process is conducted on 5 different Raspberry Pis for each
classifier. The results are shown in Table II. All classifiers have
an acceptable level of accuracy for a person recognition using
a single step. However, SVM shows an accuracy greater than
90 percent, and more than 10 and 5 percent compared with KNN
and GP respectably. The training times are acceptable for all of
them because they will be executed just one time. This time
increases if more classes are added. Finally, SVM outperforms
the classification run time. The run time increases 6.7X times
when GP classifier is used, and 28.6X times using KNN. Al-
though SVM performs better than the other classifier, to achieve
the final accuracy shown in our results, the system needs two
footsteps and the weighted voting system proposed.
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TABLE III
CONFUSION MATRIX OF EVENT CLASSIFICATION

TABLE IV
CONFUSION MATRIX OF PERSON IDENTIFICATION USING one FOOTSTEP.

SUBJECTS ARE NAMED WITH LETTERS FROM A TO F

D. Event Classification

We measure the accuracy of our SVM classifier to distin-
guish between a footstep, a fall down and other events. Ta-
ble III presents the results in a confusion matrix. It shows
four classification metrics. The first metric gives the proportion
of actual positive events that are correctly identified as posi-
tives by the classifier called Recall (Re = TP/(TP + FN)).1

Precision, that is the second metric, reflects the proportion of
events classified as positive that are actually positive (Pr =
TP/(TP + FP )). The third metric, accuracy, is number of
correct predictions divided by the total number of predictions
(Ac = (TN + TP )/(TP + TN + FP + FN)). The last met-
ric called f1 is used to seek the balance between recall and
precision (f1 = 2((Pr ∗Re)/(Pr +Re))). The first SVM
differentiates between the footsteps and other events with an
accuracy of 92.35% and a precision of 89.30%. The events that
are not recognized as footsteps are used for the second SVM to
detect fall downs with and accuracy of 73%. The precision ob-
tained is low due to the amount of fall downs events applied for
training. However, it is improved by using the acceptance area of
1.5 meters from the last footstep detected. These results are
shown on Section IV-H. Note that the percentage of recognition
of footsteps is very high due to the training set contains much
more footsteps events than other types of events.

E. Person Identification Accuracy

To measure the accuracy of our person identification method,
we test our system with six people, who are represented by
letters from A to F. For this test we used just one unit in an
area of 2.5 × 3.5 meters. The first confusion matrix (Table IV)
shows the recall, precision and accuracy measurements of the
person identification method using only one footstep. As it is
shown, the accuracy is 91.23%, which is somehow acceptable.

1TP = True Positive. FP = False Positive. TN = True Negative. FN = False
Negative.

TABLE V
CONFUSION MATRIX OF PERSON IDENTIFICATION USING two FOOTSTEPS.

SUBJECTS ARE NAMED WITH LETTERS FROM A TO F

Fig. 10. The three structural types and the sensors configuration for
each of them.

However, the precision is low, only 74.16%. This precision may
introduce a high number of false positives.

To improve the accuracy and precision of the person identi-
fication, we allow the system to analyzed two footsteps instead
of just one. The process is the same explained in the workflow,
but in the voting decision-making step, two steps are counted
for voting, which means that two tuples are sending for decision
(Φi(t) and Φi(t− 1)). Table V shows the result using two foot-
steps. Note that the accuracy was improved in more than 5%
and the precision was increased to 89.21%, which significantly
reduce the number of false alarms.

A detailed analysis of the results and a comparison with the
physical characteristics of the subjects in the study show that the
false positives we still have are due to similarities in the phys-
ical features of the subjects. For instance, subject B and F are
both men with almost the same height and an approximate same
weight. Those subjects are easy to misidentify. However, foot-
step features are different enough to get an acceptable accuracy
and precision measurements.

F. Decision Making Based on Weighted Voting System

We compare our weight based voting decision making with
a simple majority based voting system. Using our weighted
method, accuracy, precision and most importantly recall are
improved. Table VI shows the results of both methods. Note that
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Fig. 11. (a) Accuracy obtained in different types of floors. (b) Comparison of recall, precision, and accuracy using all detected events and the
events in the area of 1.5 m radius from the last step. (c) Six different events location and the comparison between real event location and estimated
location obtained with our method. Black circles represent the error area. (d) Fall down location and exemplification of the person inside the error
area. Smart device alerts the fall detected.

TABLE VI
COMPARISON OF PERSON IDENTIFICATION USING THE WEIGHTED VOTING

SYSTEM (WVS) AND SINGLE VOTING (SV)

with a single voting decision making there are some no possible
decisions since we are using four units in the experiment, for
example, when two units identify the person as subject A, and
the other two as subject B. With our weighted voting, we ensure
a decision even in these scenarios.

G. Robustness Regarding Floor Types and
Sensor-Footstep Distance

To measure the system robustness, we evaluated the perfor-
mance in different types of floors and placing the sensor at
different distances. First, we measure the accuracy of the sys-
tem in three different types of floors and 6 participants. The
three floors types and their configurations are shown in Fig. 10.
The first structure is 8.75 square meters of the carpeted-concrete
floor from our lab testbed. The second structure is 60.5 square
meters of the wooden-concrete floor from a living room of a
residential house. The third structure corresponds to 18 square
meters of carpeted wooden floor from a second-floor of a resi-
dential house. The accuracy results are shown in Fig. 11(a). The
best classification accuracy is observed in the carpeted-concrete
floor, and the lowest was obtained on the carpeted-wooden. We
realized that it is due to the carpeted-wooden introduces more
noise. In overall, a good performance was obtained in all types
of structures with an accuracy average greater than 95%.

To evaluate the influence of sensors distance in the perfor-
mance, we also carry out a sensitivity test on the three types of
floors to identify the maximum distance between sensors where
the accuracy is acceptable. The results are shown in Table VII.
The sensors were able to detect events in all floors in distances
between 0 and 4 meters. In larger distances, some few events
were not be recognized by the system. The greater the distance,
the greater the number of events that are not recognized. The
maximum distance between two sensors to avoid losing any

TABLE VII
PERCENTAGE OF EVENTS DETECTED IN DIFFERENT TYPES OF STRUCTURES

AT DIFFERENT DISTANCES IN METERS

TABLE VIII
COMPARISON OF EVENT CLASSIFICATION NUMBER AS FALL DOWN AND/OR

OTHER EVENTS. RESULTS ARE SHOWN USING THE WHOLE AREA VS. A
1.5 M RADIUS FROM THE LAST RECOGNIZED FOOTSTEP

footsteps was 8 meters. On the other hand, the signal quality to
get the features for the classifier also depends on the distance
between the steps and the sensors, but the proposed weighted
voting system gives more weight to the events with greater
accumulated energy. Then, we conclude the system is able to
identify people on different floors with an accuracy greater than
95% when the sensors are located at distances up to 11 meters.
These results demonstrate that the system is robust in different
types of floors and with sensors at different distances.

H. Accuracy of Fall Down Detection and Location

The second one-class SVM is executed once an event has
been detected as other class different from footstep. If the SVM
is used without taking into account the person who is walking
(using the whole area of study) the number of events misiden-
tified is very high. However, when we introduce the method
explained in Section III-G, the number of misidentified events
is reduced drastically. The method consists of analyzing a ra-
dius of 1.5 meters from the last recognized footstep. Results are
shown in Table VIII. The Fig. 11(b) shows the improvements in
terms of recall, precision, and accuracy once the 1.5 m radius
area is applied.
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To test our fall down location method, we use 31 different
fall down events inside our testbed to measure the error be-
tween the real and estimated location from our method. The
average error is 0.27 meters with an standard deviation of
0.15 meters. An example of six different events is shown in
Fig. 11(c). Note that our estimated location is near to the event
location and inside of the calculated error area. The error area
is calculated according to our sampling rate (1000 Hz) and
our initial velocity model. The error area is approximately
0.47 meters due to the sampling rate and the average of the
velocity model (470 m/s). All estimated events are inside this
area. This estimated area is acceptable since when a person falls
down, his body occupies an area of at least 1.5 meters. This
means that it will be always a part of the body inside the error
area.

An example of the described situation can be found in
Fig. 11(d). The four units are located at corners. A 1.65 meters
tall person falls inside the sensing area. The estimated location
of the fall down (red +) is reported to be near to the real fall
down location. Hence, the method has an acceptable accuracy
respecting the height and proportions of the person.

V. CONCLUSION

In this paper, we introduced a novel real-time non-intrusive
fall detection and person identification system that can be used
in smart homes for many purposes (e.g. elder assisted living).
The system is based on the floor vibration generated by fall
down and footsteps. After data collection with sensor-smart de-
vices and signal enhanced, we performed a feature extraction
technique that characterizes fall downs and footsteps. The fea-
ture selection was improved with an optimization technique that
indicates which features contribute more to the accuracy of our
method. We use different types of SVM to classify the features
and recognize the person who is walking. All these steps are
performed in-network and in real time. A in-network location
and calibration method is proposed to localize the footsteps and
most importantly the fall downs. The method includes commu-
nication and independent cooperation between sensor nodes. A
voting decision making is then performed to accurately identify
people. Finally, an integration with commercial smart home de-
vices is provided to generate system alerts when it is needed.
Experimental results in real seismic testbeds are presented. To
the best of our knowledge, we are presenting for the first time an
in-network fall down detection and location with structural vi-
bration data. We show our method outperformed other existing
methods that need to use more footsteps sensing to recognize
people.
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