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Abstract—Edge computing is emerging as a new infrastructure
for Internet of Things (IoT) networks by placing computation
and analytics near to where data is generated. This paper
presents a novel data analytics framework for edge computing.
The framework is based on a new decentralized algorithm,
which enables all the nodes to obtain the global optimal model
without sharing raw data. The resulting scheme executes in
a hybrid mode: local IoT nodes send computed information
to edge nodes. The edge nodes cooperate with each other by
exchanging analytics with their neighbors only. The presenting
approach is analyzed and evaluated on various applications
and the experiment results demonstrate the effectiveness of the
proposed methodology in providing fast data analytics to edge
computing infrastructure.

Index Terms—Edge computing, Internet of Things, Decentral-
ized algorithm, Data analytics.

I. INTRODUCTION

THE Internet of Things (IoT) has the potential to represent
the next evolution of the Internet as we advance by

extracting and accumulating knowledge from huge volumes
of data collected by IoT devices [1]. With the help of Cloud,
many IoT applications nowadays simply transmit all the raw
data into Cloud for processing and analytics. However, this
approach has several limitations. First, the data is too much.
With the deployment and development of IoT, the data vol-
umes generated by IoT devices is increasing, and it may not
be possible to move all the raw data over the network to
Cloud due to bandwidth limitations [2]. Second, the latency is
high. For certain time-sensitive applications, this Cloud-based
solution is prohibited due to the delay caused by moving,
processing, and analyzing the data in Cloud. Third, limited
privacy. In domains such as healthcare, the medical data cannot
be transferred and thus this “collecting and then processing”
approach is not suitable for privacy-centric applications.

Recently, the infrastructure of edge computing has been
proposed. The idea is to move computation and analytics close
to where data is generated. This architecture is promising in
addressing some of the concerns aforementioned, for example,
reduce the latency by offloading the computation into edge
nodes [3], [4]. In addition, some recent studies focusing
on resource allocation and energy efficiency of computation
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offloading in edge computing have been conducted in literature
[5], [6]. However, the privacy concern remains unsolved and
is left as an open issue in these works as raw data created by
IoT devices are still transferred to edge nodes. As a possible
solution, Federated Learning (FL), which is a new paradigm
in data analytics and machine learning can be applied to
IoT devices to jointly learn a model without sharing their
raw data [7]. But the limitation lies in its parameter-server
architecture that a central server (e.g. remote Cloud) exists for
aggregating the parameter estimates from IoT devices and thus
it is vulnerable to single point of failure. That is, if the server
is down, the data analytics process will be ceased. Considering
the points above, a natural question is: can we design a data
analytics scheme that can fit into the infrastructure of edge
computing and capable of coping with all the aforementioned
issues? To answer this question, we propose a new decen-
tralized algorithm and adapt it into a hybrid protocol for
implementation in edge computing empowered IoT networks.
In our protocol, IoT nodes transfer their gradient information
to their corresponding edge nodes according to proximity,
and then those edge nodes collaborate to obtain the global
optimal solution by exchanging their estimates with immediate
neighbors. The proposed framework does not require raw data
sharing in the entire analytics process. Moreover, there is no
central fusion center and certain node’s failure will not prevent
other nodes from performing the analytics.

The structure of this paper is as follows. Section II discusses
the related work. Section III describes the problem formula-
tion. Section IV presents the design of the proposed decen-
tralized algorithm and its convergence properties. Section V
describes the decentralized algorithm based hybrid protocol
for the edge computing infrastructure. Section VI demonstrates
the evaluation of the proposed protocol on two applications.
Finally, Section VII presents our conclusion.

II. RELATED WORK

In decentralized computing paradigms, each node holds
an objective function privately known and collaborates only
with its immediate neighbors to exchange information for the
global objective. Based on the operating mode of each node
in computation and communication, decentralized algorithms
can be categorized into synchronous or asynchronous. A series
of synchronous algorithms for solving general convex opti-
mization problems have been proposed in literature [8]–[13].
However, each node needs to wait for its slowest neighbor’s
information to proceed. An asynchronous algorithm based
on broadcast gossip was first proposed in [14] dealing with
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the average consensus problem. Nedic developed new asyn-
chronous algorithms in [15] that adopted the similar random
broadcast scheme but considered solving convex optimization
with “real” objective functions . The computation component
of the algorithm in [15] relies on a simple but efficient
(sub)gradient-based update in each node locally. Note that
our proposed algorithm is focusing on improving the local
update rule for each node in order to reduce the communi-
cation rounds required with neighbors. This is based on a
natural fact in distributed/decentralized computing that more
optimized local node update can allow the nodes to have less
information exchange with each other towards convergence.
To be specific, in addition to using gradient descent for local
update, our design combines neighbors’ gradient information
and momentum [16] to accelerate the entire process for all the
nodes to reach the optimal solution.

The main contribution of this paper is three-fold: 1) A
novel decentralized data analytics algorithm is developed. 2)
A hybrid decentralized protocol is designed for adapting the
proposed algorithm into the edge computing infrastructure
for IoT networks. 3) Convergence properties of the proposed
algorithm have been analyzed ensuring that all the nodes can
reach the same optimal solution eventually.

III. PROBLEM STATEMENT

We consider an undirected connected network G = (V, E)
where V denotes the node set and E is the edge set. The
number of nodes executing decentralized consensus is p and
two nodes i and j are neighbors if (i, j) ∈ E . There are
m objective functions that defined by the data acquisition
processes. That is, there are m data-holding places owning
the data generated locally across the network. Note that when
p = m, each node i is able to access a local private objective
function Fi : Rn → R. The goal is that each node can obtain
the global optimal solution x ∈ X minimizing the summation
of m private convex objective functions. The resulting problem
is described as follows.

min
x∈X

{
F (x) :=

m∑
i=1

Fi(x)

}
. (1)

The formulation in (1) is powerful in modeling various
problems in signal processing [17], control [18], and statistical
learning [19]. Examples of function Fi include least-squares,
logistic regression, support vector machines, etc. Related ap-
plications have been investigated in literature such as electrical
power systems, sensor networks, smart buildings, and smart
manufacturing [20], [21]. In this work, we propose a novel
decentralized algorithm and a hybrid protocol to solve (1) in
an edge computing empowered IoT network [22] (see Fig.
1). We believe that this is an important addition to existing
architectures for data analytics in edge computing based IoT
networks.

IV. ALGORITHM

A. Decentralized algorithm design

We first propose an algorithm aiming to solve the problem
in (1) in a fully decentralized manner. The number of nodes

Edge nodes 

IoT devices 

Cloud

Fig. 1: Edge computing empowered IoT infrastructure [23].

p is set to m such that each node i can access a data-holding
place, where the information is embedded in local private
objective function Fi. Each node performs local computation
and communication with its neighbors to obtain the global
optimal solution. The main computation step in this proposed
decentralized algorithm is as follows:

yik = θxikk−1 + (1− θ)xik−1,

xik = PX

[
yik − αi,k∇̃Fi(yik)− ρi,k

( ∑
u∈Ni

∇̃Fu(xuτu,k
)
)

+ βi,k
(
xik−1 − xik−2

) ]
,

(2)

where k is the virtual global iteration number. Ni is the set
of neighbors of node i. xik represents node i’s solution at k-th
iteration. ∇̃Fu(xuτu,k

) means the (sub)gradient of node u at
point xuτu,k

. τu,k characterizes the possible outdated gradient
information. If τu,k = k, ∇̃Fu(xuτu,k

) will be the current
gradient of node u. PX is the projection operator onto the
feasible set X . θ, αi,k, ρi,k and βi,k are parameters for the
algorithm and would be discussed in the context later. The
algorithm can be summarized as follows.

Algorithm 1 Accelerated decentralized algorithm based on (2)
with p = m.

Input: Starting point x1
0, x

2
0, · · · , x

p
0.

1: while each node i, i ∈ {1, 2, · · · , p} asynchronously do
2: if (node ik’s local clock ticks now) then
3: Node ik broadcasts its estimate xikk−1 and

(sub)gradient ∇̃Fi(xikk−1) to its neighbors;
4: Node i who receives node ik’s broadcast updates its

solution xik based on (2).
5: end if
6: end while

Note that the first equation in (2) fuses node i’s solution
with neighbor node ik’s using weighted average. This step is
mainly adopted to push all the nodes to reach consensus on
their estimates for the global solution. The second equation
in (2) is the local optimization step for node i, in which
yik − αi,k∇̃Fi(yik) is a regular gradient descent step using Fi
owned by node i [24]. Notice that the scheme proposed in
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[15] uses yik − αi,k∇̃Fi(yik) to update xik. In our designed
local update rule in (2), we have two extra terms. The term∑
u∈Ni

∇̃Fu(xuτu,k
) contains the neighbors’ gradient informa-

tion for node i. Together with the terms yik − αi,k∇̃Fi(yik),
it is approximately equivalent to run gradient descent using
multiple nodes’ data (multiple Fis). In the ideal case that
node i is a neighbor with all the other nodes in the system,
node i will be directly optimizing the global function F in
(1) and thus speeding up the process of obtaining the global
optimal solution. The last term in the second equation of
(2)

(
xik−1 − xik−2

)
is called “momentum”. The momentum

term brings history information into the current estimate for
finding better gradient directions with the hope of gaining
faster convergence [16]. Notice that parameters αi,k, ρi,k, βi,k
are the step sizes of the aforementioned terms, respectively.

Remark 1. There is a fundamental trade-off between com-
putation and communication in distributed/decentralized com-
puting frameworks [25]. It implies that it is possible to trade
extra computing power to reduce the communication load. In
this study, local updating rules (e.g. (2)) requiring only com-
putation of function values and gradients (not Hessians since
they are much more expensive to compute) are considered.
We aim to let local nodes work harder in order to reduce the
communication rounds needed towards convergence.

B. Convergence results

We demonstrates the convergence results of our proposed
decentralized algorithm in this subsection. Assumptions re-
quired for convergence analysis are described in Assumption
1-3.

Assumption 1. Bounded (sub)gradient for each function Fi
such that ‖∇̃Fi‖ ≤ G where G > 0 is some constant.

Assumption 2. The constraint set X is bounded such that the
problem has finite number of solutions.

Assumption 3.
∑∞
k=1

ρi,k
kαi,k

<∞,
∑∞
k=1

βi,k

kαi,k
<∞ almost

surely.

Theorem IV.1. The sequence
{
xik
}
,∀i ∈ V, k ≥ 0 generated

by Algorithm 1 for each node i has the following consensual
property almost surely:

∞∑
k=1

1

k
‖xik−1 − x̄k−1‖ <∞, and lim

k→∞
‖xik − x̄k‖ = 0,

where x̄k−1 = 1
m

∑m
i=1 x

i
k−1.

Proof. Please see Appendix B for details.

Theorem IV.2. The sequence
{
xik
}
,∀i ∈ V, k ≥ 0 generated

by Algorithm 1 for each node i reaches to a same optimal
point almost surely.

Proof. Please see Appendix C for details.

Theorem IV.3. For Algorithm 1, if Fi is strongly convex then
we have the following:

1

T

T∑
k=1

(
E

[
m∑
i=1

Fi(x
i
k)

])
− F (x∗) ≤ O

(
log T

T

)
,

1

T

T∑
k=1

(
E

[
m∑
i=1

∥∥xik − x∗∥∥
])
≤ O

(
log T

T

)
.

Proof. Please see Appendix D for details.

Remark 2. Note that Assumption 1-2 are common conditions
for analyzing distributed/decentralized algorithms [11]–[13].
For the proposed decentralized algorithm 1, the main goal
is that all the nodes can obtain the optimal solution. Also,
we are interested to see how fast all the nodes reach the
optimal solution. Theorem IV.1 indicates that each node will
converge to the average solution of all the nodes eventually,
and thus it implies that all the nodes will reach consensus
on their estimates. Based on Theorem IV.1, Theorem IV.2
confirms that our goal can be achieved such that all the
nodes will reach the same optimal solution. The statement is
derived by first showing certain node can reach the optimal
solution and then applying the fact that all the nodes will
be consensual on their estimates (Theorem IV.1). In general,
Theorem IV.3 characterizes the dependence of the solution
error (captured by the distance between nodes’ solutions to
the optimal solution) on the number of iterations. It implies
how fast all the nodes obtain the optimal solution in terms of
number of iterations.

V. IMPLEMENTATION: HYBRID PROTOCOL

In this section, we develop a hybrid decentralized protocol
in order to implement and fit the proposed Algorithm 1
into the edge computing architecture (illustrated in Fig. 1).
Assume that there are q edge nodes in the network running
decentralized analytics. Each edge node is responsible for a
set of IoT nodes near to it. Assuming each IoT is a raw
data holder and IoT node j can then access the private
objective function Fj ,∀j ∈ {1, 2, · · · ,m}. The IoT nodes will
calculate their gradients and send them to their corresponding
edge nodes. The edge nodes will then perform the fully
decentralized algorithm with each other to obtain the global
optimal solution. Since the aggregation process exists for the
edge nodes to collect their IoTs’ gradients, the whole protocol
is considered to be executed in a hybrid decentralized fashion.
The hybrid protocol consists of two parts: the procedures for
edge nodes and IoT nodes, respectively. They are summarized
in Algorithm 2 and 3 as follows.
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Algorithm 2 Edge node procedure

Input: Starting point x1
0, x

2
0, · · · , x

q
0. Initialize the iteration

number k = 0.
1: while the maximum number of iterations has not been

reached and the change between the two most recent
estimates are not within the pre-determined threshold,
each edge node i asynchronously do

2: if (node ik’s local clock ticks now) then
3: Edge node ik broadcasts its estimate xikk−1 and

(sub)gradient gikk to its neighbors;
4: Edge node i who receives edge node ik’s broadcast

updates its solution as follows.
5: Edge node i mixes its current estimate with xikk−1

using the first equation in (2).
6: Edge node i sends mixed estimate yik to its corre-

sponding IoT nodes.
7: Edge node i waits for the IoT nodes to return their

gradients and aggregate them (the summation) as gik.
8: Edge node i update its estimate based on the second

equation in (2) with replacing local gradient ∇̃Fi(yik)
with gik (aggregated from its IoT nodes), neighbors’
gradient ∇̃Fu(xuτu,k

) with guk , respectively.
9: end if

10: Increment k.
11: end while
12: Send EXIT signal.

Algorithm 3 IoT node procedure

1: while EXIT signal has not been received, each IoT node
j with j belongs to the set of IoT nodes that associated
with edge node i do

2: IoT node j receives edge node i’s mixed estimate yik.
3: IoT node j computes the gradient with respect to yik

using its local objective function Fj .
4: IoT node j sends the computed gradient to its corre-

sponding edge node i.
5: end while

The decentralized part of the hybrid protocol is that the
edge nodes compute locally and exchange their estimates with
each other. This decentralized computing framework is same
as the counterpart described in Algorithm 1 and is depicted
in Fig. 2. Note that an aggregator-based scheme is adopted
for the interaction between each edge node and its IoT nodes.
The edge node sends its parameter estimate to its IoT nodes
and each IoT node compute the gradient with respect to the
estimate received using its local objective function. These
calculated gradients will then be returned to the edge node for
aggregation. An illustration of this process is shown in Fig.
3. Notice that in our hybrid decentralized protocol, the raw
data is kept in all the IoT nodes (where the data is generated)
and has never been shared. Only the gradients and parameter
estimates would be exchanged in the data analytics process.

The signaling overhead and computation complexity in
Algorithm 2 and 3 are analyzed as follows. Assume there
are m IoT nodes (raw data-holders) and p edge nodes in

Edge nodes 

estimate & 
gradient estimate & 

gradient

Fig. 2: Interaction among the edge nodes. The edge nodes
exchange their estimates and gradient information in a decen-
tralized fashion.

…
gradient

estimate

gradient

estimate

IoT node IoT node

Edge node
Edge area

Fig. 3: Interaction between edge node and its IoT nodes
in an edge area due to proximity. The edge node sends its
mixed estimate to the IoT nodes. IoT nodes calculate the
gradient using their local objective functions and then return
the gradients to the edge node for its update.

the system. In each iteration, there are O(1) broadcast and
O(d) messages received by the edge nodes where d is the
maximum degree of the network formed by the edge nodes
(see Fig. 2). To be specific, if the edge nodes form a mesh
network, then d = p − 1. The size of each communication
is twice the size of the decision vector (i.e. x). For the
interaction between edge nodes and their IoT nodes (see Fig.
3), in each iteration, there are at most O(m) communication
from IoT nodes to their corresponding edge nodes and O(m)
communication vice versa. The size of each communication is
same as the size of the decision vector. Regarding computation
complexity, there are O(d) edge node updates performed in
parallel in each iteration where d is the maximum degree
aforementioned. Each edge node update involves gradient
evaluations conducted by its IoT nodes. Hence, there are at
most O(m) gradient calculations in each iteration.

Remark 3. In certain time-sensitive IoT applications, a so-
lution needs to be generated as quickly as possible and we
might not wait until the edge nodes to converge. But in early
stage, the edge nodes’ estimates might be different from each
other and it is difficult to determine which one is better. Thus
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Fig. 4: An example of CORE GUI. In each edge area, there
is one edge node and some IoT nodes.

a common strategy is to average all the estimates available.

VI. EXPERIMENT EVALUATION

A. Experiment Setup

We conduct experiments for our proposed hybrid decentral-
ized protocol on two applications: regularized least-square and
computed tomography. The simulations are tested in Common
Open Research Emulator (CORE), which is a distributed
network emulator [26]. All the experiments are simulated on
a MacBook Pro with an 2.6 GHz 6-Core Intel Core i7 CPU
and 16 GB memory. An example of the CORE GUI is shown
in Fig. 4. Regarding the parameters in the protocol (see (1)):
a). Any θ ∈ [0, 1] is valid and we choose θ = 0.5 as the
“mixing” parameter for all the tests in this paper. b). The step-
size αi,k for the local gradient is set to the reciprocal of the
number of updates edge node i has performed till iteration
k. c). To satisfy Assumption 3, both ρi,k and βi,k are set
to α2

i,k for simplicity. In addition, we adapt two decentralized
algorithms in [15] (named Nedic) and [27] (named FDDA) into
our hybrid architecture and compare our proposed protocol
with them. Three main metrics are used to test and compare
the convergence characteristics of the decentralized methods
aforementioned: objective value, relative error, and disagree-
ment. They are defined as follows.

1) objective value: F (x̄k), where x̄k = 1
q

∑q
i=1 x

i
k is the

average value of all the edge nodes at iteration k.
2) relative error: ‖x̄k−x∗‖2

‖x∗‖2 , where x∗ is the optimal solution
pre-computed by a centralized solver. This quantity
tracks the distance between the obtained average solu-
tion to the optimal one.

3) disagreement: 1
q

∑q
i=1 ‖xik − x̄k‖2. This quantity mea-

sures the disagreement among the edge nodes on their
estimates.

B. Test on regularized least-square

we first test our proposed hybrid protocol on the applica-
tion of regularized least-square [28], which is a ubiquitous

problem in statistics, computer science, economics [29]. The
formulation of the regularized (Tikhonov regularization [30] )
least-square problem can be expressed as follows.

min
x

1

2
‖Ax− b‖22 + γ‖x‖22, (3)

where A is a matrix whose rows usually represent data. b is a
vector and γ is the regularization parameter used to control
the trade-off between the data fitting term (first one) and
the regularization part. To fit it into our hybrid decentralized
framework, (3) is decomposed as follows.

min
x

m∑
i=1

1

2
‖Aix− bi‖22 +

γ

m
‖x‖22. (4)

Hence, the local objective function for IoT node i is:

Fi(x) =
1

2
‖Aix− bi‖22 +

γ

m
‖x‖22 (5)

For the set up of our network, we perform our test on 50
IoT nodes (data-holders, m = 50) and 10 edge nodes. In each
edge area, there are an edge node and 5 IoT nodes associated
with it. For the connectivity among all the edge nodes, random
topologies with average degree 3 and 5 are tested, respectively.
Matrix A is randomly generated with size 50×80. A and b are
evenly decomposed for all the nodes thus each IoT node has
one row of the data in A and b. Each element in matrix A and
vector b is uniformly sampled over [0, 1). The regularization
parameter γ is set to 1.

The experiment results are illustrated in Fig. 5-7. In Fig. 5
and 6, it can be seen that our proposed protocol outperforms
the benchmarks in terms of the convergence speed for average
objective value, relative error (accuracy) and the disagreement
among all the edge nodes. Comparing Fig. 5 and 6, we can
see that when the connectivity among the edge nodes is higher
(change average degree from 3 to 5), all the methods can
reach a same accuracy faster. This demonstrate the effect of
connectivity in decentralized algorithms. Also, notice that in
the metric of disagreement of estimate among all the edge
nodes (IoT nodes in the same edge area have the same
estimate as its edge node), higher connectivity smooth out
the volatility. This is expected because higher connectivity
can make information propagation faster in a decentralized
environment. Fig. 7 demonstrates the messages exchanged for
each edge node with other neighbors. Notice that in both cases
(degree is 3 and 5), the communication among all the nodes
are balanced, this is one of the characteristics of decentralized
algorithms. In addition, it can be observed that each edge node
exchanges more messages in the higher connectivity setting as
they can receive messages from more neighbors.

C. Test on computed tomography

We conduct experiments of our proposed protocol on the
application of computed tomography [31] in this subsection.
We use the code in the AIR package [32] for this test. A 2D
tomography test problem is generated using parallel beams.
For simplicity, we use the same model in (3) to reconstruct
the tomography. In the test problem, the dimension of the
tomography is 50× 50 (The resolution of the image), the size
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Fig. 5: Comparison of convergence behavior on the regularized least-square problem. 10 edge nodes are randomly connected
with average degree = 3. In each edge area, there are 5 IoT nodes.
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Fig. 6: Comparison of convergence behavior on the regularized least-square problem. 10 edge nodes are randomly connected
with average degree = 5. In each edge area, there are 5 IoT nodes.
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Fig. 7: Communication cost on the regularized least-square
problem with average node degree equals 3 (upper) and 5
(bottom) for the edge nodes topology, respectively.

of matrix A is 5400×2500 and the original vector b has been
added a 5% random noise to create the “noisy” problem. The
number of edge areas is this test is 10. The neighbors of each
edge node is randomly generated and the average degree of
each node is 5. Each edge area has 10 IoT nodes and every
IoT node contains 54 rows of data in matrix A.

The experiment results are illustrated in Fig. 8-10. Fig.
8 demonstrates again that our proposed hybrid protocol is
superior to the other benchmarks in the speed of obtaining
the global optimal solution for all the nodes in the network.
Fig. 9 shows the tomography results of the 2D test problem
and it can be observed that our decentralized solution is
close to the centralized counterpart visually. Notice that the
centralized solution (fig (b)) is not identical to the groundtruth
(fig (a)) due to the added noise. The model used to reconstruct
the tomography affect the tomography results we obtained
comparing to the groundtruth and how to design reconstruction
model is out of scope of this presenting work. Our goal is to
obtain the same optimal solution (as the centralized one) using
the proposed hybrid decentralized protocol. In Fig. 10, we take
a closer look on the convergence performance of each edge
node individually. It can be seen that after around 60 iterations,
all the edge nodes’ estimates are very close to each other and
it is a desirable property that we can pick up any edge node’s
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Fig. 8: Comparison of convergence behavior on the computed tomography problem. 10 edge nodes are randomly connected
with average degree = 5. In each edge area, there are 10 IoT nodes.

(a) ground-truth. (b) centralized solution. (c) proposed method at iteration 500.

Fig. 9: Tomography results for the 2D parallel-beam tomography test problem.
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Fig. 10: Convergence behavior of each edge node in terms of
the objective value on the computed tomography problem.

estimate as our final solution since they are all consensual.
Behind Fig. 10, note that there are 50 gradient evaluations
performed by IoT nodes in parallel in each iteration. This is
due to the fact that there are 5 edge nodes selected for updating
in each iteration and each edge area contains 10 IoT nodes.

D. Test on logistic regression

In this subsection, we perform tests on logistic regression
task to further demonstrate the applicability of our decentral-
ized protocol. We use the enron email dataset [33] and train a
logistic regression model to classify an email as spam or ham.
The task can be formulated in a decentralized optimization
fashion as follows.

min
x

m∑
i=1

mi∑
j=1

log

(
1 + exp

(
−bji

(
Aji

)T
x

))
. (6)

The local objective function held by IoT node i is:

Fi (x) =

mi∑
j=1

log

(
1 + exp

(
−bji

(
Aji

)T
x

))
, (7)

where mi is the number of the instances owned by IoT node i.
bji is the j-th element of vector bi, which contains the binary
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outcomes at i-th IoT. Similarly,
(
Aji

)T
denotes the j-th row

of matrix Ai. Each row in Ai represents an instance and the
columns are feature variables. We use the first two folders
of the emails in this scenario. The first 5000 emails are used
for training and the remaining 6029 emails for testing. The
emails are pre-proceesed and 7997 frequent words are kept as
features. For the setup about the edge computing environment,
100 IoT nodes (m = 100) and 10 edge nodes are used. In each
edge area, there are 10 IoT nodes. The number of immediate
neighbors for each edge node is set to 5. The raw data is
evenly divided into the IoT nodes and thus each one contains
50 records (mi = 50). Hence, the dimension of Ai and bi are
50 × 7997 and 50 × 1, respectively. The experiment results
are shown in Fig. 11. The log loss and classification error
are adopted to measure the performance of the model. The
average model of the 10 edge nodes is used to capture the
characteristics of the proposed decentralized analytics process
on the training and testing datasets, respectively. It can be seen
that both training and testing error are below 0.02 (accuracy
0.98) after around 20 iterations.
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Fig. 11: Logistic regression for the Enron email dataset classi-
fication problem. There are 10 edge nodes and 100 IoT nodes.
The average model of all the 10 edge nodes is tested for the
two performance metrics: log loss (value of the loss function)
and error (fraction that the model is is wrong in classification).

VII. CONCLUSION

With large-scale deployment of IoT devices, traditional
Cloud-based solution is prohibited for associated IoT data

analytics tasks due to three main limitations: large data
movement, high latency, and limited privacy. Edge comput-
ing emerges as a promising infrastructure for IoT networks
while careful design is needed for building the data analytics
pipeline. We proposed a hybrid decentralized framework for
edge computing empowered IoT networks aiming to address
all the issues above. Theoretical analysis and experimental
evaluations elucidate that the proposed approach is capable of
offering efficient data analytics with all the raw data localized.
Possible future work includes investigating new analysis for
our decentralized scheme that can lift conditions such as
Assumption 1 and embedding other privacy-preserving tech-
niques to further enhance the privacy level of the framework.

APPENDIX A
LEMMAS NEEDED FOR THE PROOF

In this section, we first list the lemmas required for the proof
of Theorem IV.1-IV.3.

Lemma A.1. (The supermartingale convergence theorem
[Proposition 8.2.10 in [34]]) Assume σk, ϕk, ωk, and εk are
nonnegative random variables and assume the following hold

E (σk+1|Ωk) ≤ σk − ϕk + εk almost surely,
∞∑
k=1

εk <∞ almost surely

where E (σk+1|Ωk) represents the conditional expectation
given all the past history of σk, ϕk, and εk up to iteration
k. Then it concludes that

σk → σ almost surely,
∞∑
k=1

ϕk <∞ almost surely

where σ ≥ 0 is some random variable.

Lemma A.2. ( [15]) The upperbounds of step size αi,k are
obtained as follows when k is large enough (k > k̃(m, q))

αi,k ≤
2

kδi
, α2

i,k ≤
4m2

k2p2
∗
,

∣∣∣∣αi,k − 1

kδi

∣∣∣∣ ≤ 2

k
3
2−qp2

∗
,

where δi is the total probability that node i updates. p∗ denotes
the minimum among all pij’s. q ∈

(
0, 1

2

)
is some constant.

k̃(m, q) is an integer determined by the number of nodes m
and q.

Lemma A.3. (Proposition 1.1.9 in [35]) The projection used
in (2) is nonexpansive such that

‖PX (x)− PX (y)‖ ≤ ‖x− y‖ ,

where PX is the projection operator on set X and x, y are
two points.

Lemma A.4. (lemma 6 in [27]) The following two relations
hold

m∑
i=1

E
[∥∥yik − x∥∥ |Ωk−1

]
≤

m∑
i=1

∥∥xik−1 − x
∥∥ ,

m∑
i=1

E
[∥∥yik − x∥∥2 |Ωk−1

]
≤

m∑
i=1

∥∥xik−1 − x
∥∥2
.
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APPENDIX B
PROOF OF THEOREM IV.1

Proof. We prove Theorem IV.1 for Algorithm 1. The proof
follows the framework for Theorem VI.7 in [27]. The main
difference is the error term eik and also its bounds. We provide
a sketch for the sake of completeness. Let stk to be avector with
components

[
xik
]
t
,∀i ∈ V , where

[
xik
]
t

is the t-th element of
node i’s estimate at iteration k. It follows that:

stk = Wks
t
k−1 + dtk, (8)

where dtk is a vector defined as follows.[
dtk
]
i

=
[
−αi,k

(
∇̃Fi(yik) + eik

)]
t
, i ∈ Jk (9)

And [dtk]i = 0 otherwise. Jk is the set of nodes who receive
the estimate and will perform update locally in iteration k. We
can express the error term eik as follows.

eik =
ρi,k
αi,k

(∑
u∈Ni

∇̃Fu(xuτu,k
)

)
− βi,k
αi,k

(
xik−1 − xik−2

)
.

Following the proof in Appendix A in [27], we can obtain the
following.

E
[∥∥stk − [x̄k]t 1

∥∥2 |Ωk−1

]
≤ µ

∥∥stk−1 − [x̄k−1]t 1
∥∥2

+
4m3

k2p2
∗

∥∥∥∇̃Fi(yik) + eik

∥∥∥2

+
√
µ
∥∥stk−1 − [x̄k−1]t 1

∥∥ 2m
√
m

kp∗

∥∥∥∇̃Fi(yik) + eik

∥∥∥ (10)

where Ωk is the σ-algebra containing the past history up to
iteration k, i.e.

Ωk =
{
xi0, it, jt,∀i ∈ V, t = 0, 1, · · · k

}
.

. The different thing about our proposed Algorithm 1 is that
the following terms in (10) can be bounded as follows.∥∥∥∇̃Fi(yik) + eik

∥∥∥2

≤ 2
∥∥∥∇̃Fi(yik)

∥∥∥2

+ 2
∥∥eik∥∥2

≤ 2G2 + 4

(
ρi,k |Ni|G

αi,k

)2

+ 4

(
βi,k
αi,k

∥∥xik−1 − xik−2

∥∥)2

≤ 2G2 + 4

(
ρi,k |Ni|G

αi,k

)2

+ 4

(
2βi,kdX
αi,k

)2

,

∥∥∥∇̃Fi(yik) + eik

∥∥∥ ≤G+ αi,k (NG+ 2dX)

≤2mG

kp∗
+

4m2 (NG+ 2dX)

k2p2
∗

,

where we use the relation that∥∥xik−1 − xik−2

∥∥ =
∥∥(xik−1 − x∗

)
+
(
x∗ − xik−2

)∥∥
≤
∥∥xik−1 − x∗

∥∥+
∥∥xik−2 − x∗

∥∥
≤ 2dX ,

dX is the diameter of the bounded set X such that dX ≡
maxa,b∈X ‖a− b‖, |Ni| is the cardinality of set Ni.

The remaining deduction is similar to the proof of Theorem
VI.7 in [27].

APPENDIX C
PROOF OF THEOREM IV.2

Proof. Since Algorithm 1 is a stochastic algorithms and
associated proofs are usually based on the supermartingale
convergence theorem in Lemma A.1 is show the almost sure
convergence. The attack plan is to bound the terms and fit
them into Lemma A.1. We prove Theorem IV.2 for Algorithm
1. The proof follows the framework for Theorem VI.8 in [27].
Again, the error term eik is defined differently and also we
need to find the bounds for that. We provide a sketch for the
sake of completeness.

Taking a look at node i with i ∈ Jk. We first subtract some
x in the feasible set on both sides of the second equation in
(2) and then take the square norm on both sides. Based on the
property of the projection operation in Lemma A.3, we can
obtain the following.

∥∥xik − x∥∥2 ≤
∥∥yik − x∥∥2

+ α2
i,k

∥∥∥∇̃Fi(yik) + eik

∥∥∥2

− 2αi,k

(
∇̃Fi(yik) + eik

)T (
yik − x

)
, (11)

where eik is defined as follows.

eik =
ρi,k
αi,k

(∑
u∈Ni

∇̃Fu(xuτu,k
)

)
− βi,k
αi,k

(
xik−1 − xik−2

)
.

Using the facts that
∣∣aT b∣∣ ≤ ‖a‖ ‖b‖, ‖a+ b‖2 ≤ 2 ‖a‖2 +

2 ‖b‖2 and the assumption of bounded (sub)gradient, the terms
associated with eik can be bounded as follows.

−
(
eik
)T (

yik − x
)

=
ρi,k
αi,k

(∑
u∈Ni

∇̃Fu(xuτu,k
)

)T (
yik − x

)
− βi,k
αi,k

(
xik−1 − xik−2

)T (
yik − x

)
≤ ρi,k |Ni|G

αi,k

∥∥yik − x∥∥+
βi,k
αi,k

∥∥xik−1 − xik−2

∥∥∥∥yik − x∥∥
≤ ρi,k |Ni|G

αi,k

∥∥yik − x∥∥+
2βi,kdX
αi,k

∥∥yik − x∥∥ , (12)

∥∥∥∇̃Fi(yik) + eik

∥∥∥2

≤ 2
∥∥∥∇̃Fi(yik)

∥∥∥2

+ 2
∥∥eik∥∥2

≤ 2G2 + 4

(
ρi,k |Ni|G

αi,k

)2

+ 4

(
βi,k
αi,k

∥∥xik−1 − xik−2

∥∥)2

≤ 2G2 + 4

(
ρi,k |Ni|G

αi,k

)2

+ 4

(
2βi,kdX
αi,k

)2

,

Following the proof in Appendix B in [27], we can obtain
the following.
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m∑
i=1

E
[∥∥xik − x∗∥∥2 |Ωk−1

]
≤ (1 + bk)

m∑
i=1

∥∥xik−1 − x∗
∥∥2 − 2

k
(F (x̄k−1)− F (x∗))

+
2mG

kp∗

m∑
i=1

∥∥xik−1 − x̄k−1

∥∥+
m∑
i=1

δi
(
α2
i,k + bk

)
Cik

+
2m2

(
NGdXρi,k + 2d2

Xβi,k
)

kp∗αi,k
, (13)

where N = maxs |Ns|, bk = 2
k3/2−qp2∗

, Cik = 2G2 +

4
(
ρi,kNG
αi,k

)2

+ 4
(

2βi,kdX
αi,k

)2

. Select ρi,k and βi,k satisfying

the assumption that
∑∞
k=1

ρi,k
kαi,k

< ∞,
∑∞
k=1

βi,k

kαi,k
< ∞

with probability 1. From the definitions of αi,k, bk, it can be
seen that

∞∑
k=1

bk <∞,
∞∑
k=1

(
α2
i,k + bk

)
<∞. (14)

The remaining deduction is similar to the proof of Theorem
VI.8 in [27].

APPENDIX D
PROOF OF THEOREM IV.3

Proof. We prove the convergence rate Theorem IV.3 here.
From (11), it follows that for i ∈ Jk,∥∥xik − x∗∥∥2 ≤

∥∥yik − x∗∥∥2
+ α2

i,k

∥∥∥∇̃Fi(yik) + eik

∥∥∥2

− 2αi,k

(
∇̃Fi(yik) + eik

)T (
yik − x∗

)
, (15)

where x∗ ∈ X∗ is an optimal point for (1). Assume function
Fi is λi-strongly convex, then the following inequality holds:

(
∇̃Fi(yik)

)T (
yik − x∗

)
≥ Fi(yik)−Fi(x∗)+

λi
2

∥∥yik − x∗∥∥2
.

(16)
Plugging the inequalities (12) and (16) with the property

about the diameter dX into (15) yields∥∥xik − x∗∥∥2 ≤
∥∥yik − x∗∥∥2

+ 2α2
i,k

[
G2 + 2

(
ρi,k |Ni|G

αi,k

)2

+ 2

(
2βi,kdX
αi,k

)2
]

− 2αi,k

(
Fi(y

i
k)− Fi(x∗) +

λi
2

∥∥yik − x∗∥∥2
)

+ 2ρi,k |Ni|GdX + 4βi,kd
2
X . (17)

At this point, assume we set ρi,k = βi,k = α2
i,k. Together

with the fact that αi,k ≥ 1
k and α2

i,k ≤ 4m2

k2p2∗
(Lemma A.2),

we can obtain as follows.

∥∥xik − x∗∥∥2 ≤
∥∥yik − x∗∥∥2

+
8m2

k2p2
∗

[
G2 + 2

(
ρi,k |Ni|G

αi,k

)2

+ 2

(
2βi,kdX
αi,k

)2
]

− 2

k

(
Fi(y

i
k)− Fi(x∗) +

λi
2

∥∥yik − x∗∥∥2
)

+
8m2

k2p2
∗

[
|Ni|GdX + 2d2

X

]
≤
(

1− λ

k

)∥∥yik − x∗∥∥2 − 2

k

(
Fi(y

i
k)− Fi(x∗)

)
+

8m2

k2p2
∗

(
G2 +NGdX + 2d2

X +
4m2

(
2N2G2 + 8d2

X

)
k2p2
∗

)
.

(18)

where λ = mins λs. Taking conditional expectation on both
sides of (18) and considering the fact that xik = yik if i 6∈ Jk
and node i updates with probability δi, we can obtain the
relation for i ∈ V as follows.

E
[∥∥xik − x∗∥∥2 |Ωk−1

]
≤
(

1− λ

k

)
E
[∥∥yik − x∗∥∥2 |Ωk−1

]
− 2δi

k

(
Fi(y

i
k)− Fi(x∗)

)
+

8m2δi
k2p2
∗

(
G2 +NGdX + 2d2

X +
4m2

(
2N2G2 + 8d2

X

)
k2p2
∗

)

≤
(

1− λ

k

)
E
[∥∥yik − x∗∥∥2 |Ωk−1

]
− 2p∗
km

(
Fi(y

i
k)− Fi(x∗)

)
+

8m2

k2p2
∗

(
G2 +NGdX + 2d2

X +
4m2

(
2N2G2 + 8d2

X

)
k2p2
∗

)
,

(19)

where the last inequality is based on the facts that δi ≥ p∗
m

and δi ≤ N
m . Summing up both sides of (19) over all the nodes

i ∈ V , applying Lemma A.4 and the definition in (1) yields

m∑
i=1

E
[∥∥xik − x∗∥∥2 |Ωk−1

]
≤
(

1− λ

k

) m∑
i=1

∥∥xik−1 − x∗
∥∥2

− 2p∗
km

[(
m∑
i=1

Fi(y
i
k)

)
− F (x∗)

]

+
8m2N

k2p2
∗

(
G2 +NGdX + 2d2

X +
4m2

(
2N2G2 + 8d2

X

)
k2p2
∗

)
.

(20)

By the convexity of function Fi and the bounded
(sub)gradient assumption, the following relation can be ob-
tained.

Fi
(
yik
)
≥Fi

(
xik
)

+
(
∇̃Fi(xik)

)T (
yik − xik

)
≥Fi

(
xik
)
−G

∥∥yik − xik∥∥ . (21)
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Now we need to bound the term
∥∥yik − xik∥∥. Based on the

nonexpansive property of the projection operation and the
main computation step in the algorithm, we can have∥∥yik − xik∥∥ ≤αi,k ∥∥∥∇̃Fi(yik) + eik

∥∥∥
≤αi,k (G+ αi,k (NG+ 2dX))

≤2mG

kp∗
+

4m2 (NG+ 2dX)

k2p2
∗

, (22)

where the last inequality is based on the relations in Lemma
A.2. Applying (22) to (21) and then plugging it into (20) yields

m∑
i=1

E
[∥∥xik − x∗∥∥2 |Ωk−1

]
≤
(

1− λ

k

) m∑
i=1

∥∥xik−1 − x∗
∥∥2

+
8m2N

k2p2
∗

(
C1 +

p∗G
2

km
+

2p∗GdX
kmN

+
C2

k2p2
∗

)
− 2p∗
km

([
m∑
i=1

Fi(x
i
k)

]
− F (x∗)

)
, (23)

where C1 ≡ G2 + NGdX + 2d2
X +

p2∗G
2

2m2N , C2 ≡
4m2

(
2N2G2 + 8d2

X

)
.

Taking expectation on both sides yields(
E

[
m∑
i=1

Fi(x
i
k)

]
− F (x∗)

)

≤ (k − λ)m

2p∗
E

m∑
i=1

∥∥xik−1 − x∗
∥∥2 − km

2p∗
E

m∑
i=1

∥∥xik − x∗∥∥2

+
8m3N

kp3
∗

(
C1 +

p∗G
2

km
+

2p∗GdX
kmN

+
C2

k2p2
∗

)
. (24)

By summing from k = 1 to k = T , we obtain

1

T

T∑
k=1

(
E

[
m∑
i=1

Fi(x
i
k)

])
− F (x∗)

≤ O (1)

T
+

8m3NC1

Tp3
∗

T∑
k=1

1

k

+
8m2G (NG+ dX)

Tp2
∗

T∑
k=1

1

k2
+

8m3NC2

Tp3
∗

T∑
k=1

1

k3

≤ O (1) +O (log T )

T

= O

(
log T

T

)
. (25)

The first inequality in (25) is based on the relation as follows.

1

T

T∑
k=1

(
(k − λ)m

2p∗
E

m∑
i=1

∥∥xik−1 − x∗
∥∥2

−km
2p∗

E
m∑
i=1

∥∥xik − x∗∥∥2

)
≤ O (1)

T
.

The associated term does not affect the convergence rate
result and is thus omitted in (25) in order to simply the
notation. The last two terms in (25) are p-series with p = 2
and 3 and they are known to converge.

By the strongly convexity of function Fi, we can also infer
that

1

T

T∑
k=1

(
E

[
m∑
i=1

∥∥xik − x∗∥∥
])
≤
(

log T

T

)
.

This completes the proof for Theorem IV.3.
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