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Abstract Abstract 
Cyber attacks threaten the security of distribution power grids, such as smart grids. The emerging 
renewable energy sources such as photovoltaics (PVs) with power electronics controllers introduce new 
potential vulnerabilities. Based on the electric waveform data measured by waveform sensors in the 
smart grids, we propose a novel cyber attack detection and identification approach. Firstly, we analyze the 
cyber attack impacts (including cyber attacks on the solar inverter causing unusual harmonics) on 
electric waveforms in distribution power grids. Then, we propose a novel deep learning based mechanism 
including attack detection and attack diagnosis. By leveraging the electric waveform sensor data 
structure, our approach does not need the training stage for both detection and the root cause diagnosis, 
which is needed for machine learning/deep learning-based methods. For comparison, we have evaluated 
classic data-driven methods, including -nearest neighbor (KNN), decision tree (DT), support vector 
machine (SVM), artificial neural network (ANN), and convolutional neural network (CNN). Comparison 
results verify the performance of the proposed method for detection and diagnosis of various cyber 
attacks on PV systems. 
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1. Introduction 

Power grids have become more vulnerable to cyber threats than 

before (Sarangan et al., 2018). Power electronics converters are becoming more 

vulnerable to cyber-attacks due to their growing penetration in Internet of 

Things (IoT) enabled applications, including the smart grids (Balda et al., 2017). 

In response to this emerging concern, developing cyber-secure power 

electronics converters has received increased attention from the IEEE power 

electronics society (PELS) that recently launched a cyber-physical-security 

initiative. There are two main reasons: First, to improve the operation efficiency 

and eliminate human intervention, the power grid has been more and more 

connected, resulting in increasing challenges in reliability, security, and stability. 

Second, a significantly increased amount of distributed energy resources 

(DERs), such as solar photovoltaic (PV) (Liu et al., 2016) that are typically 

power electronics converters, are being incorporated into smart grids. Due to 

the lack of cyber awareness in power electronics community (Balda et al., 2017), 

it becomes more urgent to develop cyber-attack detection and identification 

strategies for power electronics converters in many safety-critical applications 

since these malicious attacks can lead to a catastrophic failure and substantial 

economic loss if not detected in the early stage.  

Attacks are studied in applications which are intensively dependent on 

power electronics converters, including power grids with voltage support 

devices (Chen et al., 2013), distribution systems with solar farms (Isozaki et al., 

2016), with power electronics driven HVAC (Heating, ventilation, and air 

conditioning) systems (Cao et al., 2018), and microgrids (Liu et al., 2017; 

Zhang et al.,2019). However, they mostly focus on either analyzing or detecting 

cyber-attacks affecting grid-level stability, functionality, and operational costs. 

In Sridhar and Govindarasu (2014), a model-based method was developed to 

detect data integrity attacks on automation generation control of transmission 

systems. In Isozaki et al. (2016), a physical-law based detection was developed 

to detect false data attacks that attempt to reduce the output power of solar 

energy in distribution systems. In Cao et al. (2018), a secure information flow 

framework was developed for 118-bus distribution network with power 

electronics driven HVAC system. In Sahoo et al. (2018), a physics-based, 

cooperative mechanism was developed to detect stealthy attacks in DC 

microgrids with multiple of DC-DC converters, which can bypass most of 

observer-based detection methods. In Beg et al. (2017), a physics-based 

framework to detect false-data injection attacks in DC microgrids with multiple 

DC-DC converters. While power electronics converters are included in their 

cyber-security monitoring frameworks, they are designed to detect one 

particular type of grid-level cyber-attacks, but those on the devices (power 

electronics converters) are not studied. Thus, their cyber-security framework is 

not applied to (1) cyber-attack detection on power electronics converters, which 
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might affect the performance of power electronics converters, and (2) the root 

cause identification when a variety of attacks occur. 

As smart grids are evolving to complex cyber-physical systems (CPS), 

there might be a variety of cyber-attacks including coordinated attacks. To 

mitigate the vulnerability, model-based and data-driven methods have been 

proposed (Esmalifalak et al., 2014). However, model-based methods that rely 

on the accurate mathematical models of the healthy systems are hard to be used 

in real applications because of an unavoidable model-reality mismatch for the 

complexity of power electronics-based smart grids. Data-driven methods, on the 

other hand, employing measured data without an explicit mathematical model, 

are currently receiving attention (Li et al., 2019b; 2019c). To date, the grid 

security heavily focuses on the system-level and almost neglects the device-

level security, particularly power electronics converters, which has not been 

well addressed (Balda et al., 2017). In our previous work (Li et al., 2019d), we 

detected and diagnosed a variety of cyber-physical threats for distribution 

systems with PV farms, including cyber-attacks on the solar inverter controller, 

cyber-attacks on relays/switches, and other faults (e.g., short circuit faults). 

Data-driven approaches are gaining increased attention in recent years due to 

the advancements in sensing and computing technologies (Liu et al., 2018; 

Ferreira et al., 2015; Mahela et al., 2015; Shi et al., 2019). They show great 

potentials in detecting and identifying complicated cyber-attacks. The data 

sources for these purposes include solar power plants, wind turbines, 

hydroelectric plants, marine turbines, phasor measurement unit (PMU), 

microgrids, fault detectors, smart meters, smart appliances and electric 

vehicles (Tan et al., 2017). In Amini et al. (2015), A data-driven time-frequency 

analysis was proposed to detect the dynamic load altering attacks. In Zhou et al. 

(2018), a data-driven hidden structure semi-supervised machine was proposed 

to implement the power distribution network attack detection. In Lu et al. (2018), 

multistream data flow was employed to build effective and efficient attack-

resilient solutions against the cyber threats targeting electric grids. In Tian et al. 

(2018), a data-driven and low-sparsity false data injection attack strategy 

against the smart grid was investigated. In Xun et al. (2018), a machine learning 

solution was proposed to identify the false data injection attacks on transmission 

lines of smart grids. Existing data-driven approaches, however, have not yet 

been used to detect cyber-attacks at the device level (power electronics 

converters). Thus, a data-driven methodology is needed to detect and identify a 

variety of cyber-attacks, that negatively affect both the power electronics 

converter (such as a solar inverter) and other critical components (such as relays 

and generators) in power grids. 

Fig. 1 shows the diagram of the distribution power grid with solar farms. 

The solar farm is physically connected to the distribution grid through the 

DC/DC, DC/AC converters, and the grid-connected transformers. Then the 

major components and control center are connected through cyber networks. 

The attacks in red are the potential cyber-attacks on the control center (such as 
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data integrity attacks on inverter feedback/control signals or some abnormal 

delay injected to the control signal), which will compromise the performance of 

the grid and power electronics converters; cyber-attacks can also target the 

power grid facilities (such as single/multiple phase short circuit faults of 

transformers/generators, abnormal load/capacitor bank cut-off). We need to 

detect and diagnose cyber-attacks to the distribution power grids with PV 

systems. Compared with the traditional hardware protections, for example, 

relays, we develop a comprehensive data-driven solution to adaptively, 

efficiently, and accurately monitor the power grid with various power 

electronics devices, protecting the system from cyber-attacks, even subtle ones.  

 

 

Figure 1. Cyber-attacks threaten the security of the distribution power grid with a 

solar farm. 

In this paper, we propose to develop a data-driven methodology to detect and 

identify the cyber-attacks on the distribution power grid with solar farms. We 

first analyze and simulate the impacts of cyber-attacks on electrical waveforms 

in the distribution power grid with solar farms. Here, we propose a data-driven 

deep sequence learning method for automatic cyber-attack diagnosis of smart 

grids with PVs based on feature extraction, anomaly detection, and feature 

characterization. Unlike our previous approach, we propose to use only one 

voltage sensor and one current sensor at the point of common coupling for PV 

systems to detect and diagnose cyber-attacks on DC/DC and DC/AC converters. 

We test and evaluate our approach in a MATLAB model of the distribution 

power grid with solar farms in different cyber-attack scenarios (more than 3000 

cases). Here, we assume that the waveform sensor at the point of common 

coupling (PCC) is secure and trustworthy. In real applications, its 
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communication channel can be encrypted to ensure the security of waveform 

data. We propose to use multilayer long short-term memory (MLSTM) 

networks (Gers et al., 1999) to handle intrinsic sequential characteristics of 

streaming sensor data. Five data-driven methods are engaged as comparison 

methods, which are 𝐾-nearest neighbor (KNN), decision tree (DT), support 

vector machine (SVM), artificial neural network (ANN), and convolutional 

neural network (CNN). Finally, the contributions and innovations of our work 

are:  

1.We develop a novel framework that effectively detects and identifies 

both cyber-attacks on the grid level and device level (power electronics 

converters) in the distribution power grid with solar farms.  

2.We propose an innovative waveform data based signal processing and 

online statistics associated method to detect the cyber-attacks. The 

proposed data-driven method detects attacks based on the dependence 

structure of multi-dimensional streaming sensor data.  

3.We propose to use the feature distribution of latent variables based on 

matrix factorization to diagnose the cyber-attack types. The proposed 

attack diagnosis approach does not require a training stage, which is 

superior to machine learning/deep learning-based methods in terms of 

computational efficiency.  

2. Cyber-Physical Modeling and Control of PVs 

In general, solar farms include four major components: solar panels, first stage 

DC/DC converter, second stage DC/AC inverter, and the grid-connected 

transformer. Here, we analyze, detect, and identify cyber-attacks on the solar 

inverter, causing the unusual harmonics and then poor power quality in 

distribution systems.  

 

 
 Figure 2. Main circuit topology of the inverter.𝑺𝟏 ∼ 𝑺𝟔 denote the switching signals. 

The main topology of the solar inverter is shown in Fig. 2, and the 
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generalized physical model of DC/AC solar inverter is derived as follows:  

 

{
 
 

 
 
𝑑𝑖𝑎
𝑑𝑡

= −
𝑅

𝐿
𝑖𝑎 −

𝑒𝑎
𝐿
+
𝑉𝑑𝑐
3𝐿
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= −
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+
𝑉𝑑𝑐
3𝐿

(−𝑠𝑎 + 2𝑠𝑏 − 𝑠𝑐),

𝑑𝑖𝑐
𝑑𝑡

= −
𝑅

𝐿
𝑖𝑐 −

𝑒𝑐
𝐿
+
𝑉𝑑𝑐
3𝐿

(−𝑠𝑎 − 𝑠𝑏 + 2𝑠𝑐),

 (1) 

where the control signals 𝑠𝑎, 𝑠𝑏 , 𝑠𝑐 will be sent from the cyber system and are 

defined as:  

 

𝑠𝑎 = {
1 (𝑆1 = 1, 𝑆4 = 0)
0 (𝑆1 = 0, 𝑆4 = 1)

, 

𝑠𝑏 = {
1 (𝑆3 = 1, 𝑆6 = 0)
0 (𝑆3 = 0, 𝑆6 = 1)

, 

𝑠𝑐 = {
1 (𝑆5 = 1, 𝑆2 = 0)
0 (𝑆5 = 0, 𝑆2 = 1)

, 

(2) 

where, 𝑖𝑎, 𝑖𝑏 , 𝑖𝑐  are the currents of each phase, 𝑒𝑎, 𝑒𝑏 , 𝑒𝑐  are the phase 

voltages of the power grid and 𝐿  and 𝑅  are the inverter inductance and 

resistance, 𝑉𝑑𝑐 is the DC bus voltage after the first stage DC/DC converter. To 

simplify the analysis process, direct-quadrature-zero (DQZ) transformation is 

adopted (Ye et al., 2010):  

 {

𝑑𝑖𝑑
𝑑𝑡

= −
1

𝐿
𝑒𝑑 +

1

𝐿
𝑉𝑑𝑐𝑆𝑑 + 𝜔𝑖𝑞 −

𝑅

𝐿
𝑖𝑑 ,

𝑑𝑖𝑞

𝑑𝑡
= −

1

𝐿
𝑒𝑞 +

1

𝐿
𝑉𝑑𝑐𝑆𝑞 − 𝜔𝑖𝑑 −

𝑅

𝐿
𝑖𝑞 ,

 (3) 

where 𝜔 is the electric angular frequency, and the control input is transformed 

as 𝑆𝑑 and 𝑆𝑞, and other variables are all corresponding to the 𝑑 − and 𝑞 − 

axis components. 

Fig. 3 shows the control diagram of the solar farm system, and the cyber-

attack on the solar inverter is denoted red, which injects a false signal to the 

solar inverter control signals. Cyber-attacks disrupt the system by manipulating 

data or introducing corruption. Attacks are assumed to happen between the end 

devices (or sensors) and the control center, e.g., smart grid measurement data 

can be attacked in conjunction with the solar panel measurement data. Cyber-

attacks are usually defined as mixing the original data/measurements vector 

with a malicious vector (Beg et al., 2017):  

 𝒁 = 𝛼 ∗𝑾+ 𝒁0, (4) 

where 𝒁 is the compromised data vector that is eventually used by the system, 

𝒁0 is the true measurement, 𝑾 is a general compromised data vector which 

can be independent or determined by 𝒁0 , 𝛼  is a multiplicative factor that 

defines the weight of the attack vector.  
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Figure 3. Control diagram of the solar farm system. 

3. Methodology 

3.1. Problem setup 

Suppose we have sequential observations at 𝑘 sensors, 𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑘(𝑡). 
Before the emergence of the attack, the observations are normal conditions 

following the electronic model 𝜂(⋅)  described in Section 2 with a random 

noise, i.e., 𝜖(𝑡) ∼ 𝑁(0, 𝜎2) . When an attack occurs, the observations at 

different sensors will capture it but with different responses. We assume the 

attack signal is causal, i.e., 𝜂(𝑡) = 0, ∀𝑡 < 0.  

For the 𝑖th sensor, the observed data can be expressed as:  

 
𝑥𝑖(𝑡) = 𝜂(𝑡) + 𝜖𝑖(𝑡), 𝑡 = 1,2, … , 𝜏,
𝑥𝑖(𝑡) = 𝛼𝑖𝜂

∗(𝑡 − 𝜏𝑖) + 𝜖𝑖(𝑡), 𝑡 = 𝜏 + 1, 𝜏 + 2,… ,
 (5) 

where 𝛼𝑖 is the unknown amplitude of the change at the 𝑖th sensor. A sensor 

data matrix 𝑋 can be constructed, 𝑋(𝑡) = [𝑥1(𝑡), … , 𝑥𝑘(𝑡)], 𝑋 ∈ ℝ
𝑘×𝑛, 𝑛 is 

the data sample number.  

3.2. Feature Extraction 

The measured normal waveform data are typically sinusoidal functions for AC 

power grids. In order to extract the waveform information with impacts from 

different attacks, we need to extract signal features first, such as the health index 

in Liu et al. (2013) and signal quality measurements in Yang et al. (2019).  

3.2.1. Instantaneous Features 

The waveforms of voltage and current signals 𝑽 = [𝑉1, 𝑉2, … , 𝑉𝑁]
𝑇 , 𝑰 =

[𝐼1, 𝐼2, … , 𝐼𝑁]
𝑇  are measured from a network with size 𝑁  the nodal, where 

depending on the number of phases at node 𝑖, 𝑉𝑖 and 𝐼𝑖 can be row vectors of 

size 1, 2, or 3. In order to characterize the waveform properties, we adopt 

instantaneous properties from:  
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 𝑠𝑐(𝑡) = 𝑠(𝑡) + 𝑗ℋ{𝑠(𝑡)} = 𝐴(𝑡)𝑒𝑗𝜓(𝑡), (6) 

where 𝑠(𝑡) is the real signal, 𝑠𝑐(𝑡) is the complex expression, 𝐴(𝑡) is the 

instantaneous amplitude (IA) (envelope), 𝜓(𝑡) is the instantaneous phase(IP), 

ℋ is the Hilbert transform as:  

 ℋ{𝑠(𝑡)} =
1

𝜋
∫
𝑠(𝜏)

𝑡 − 𝜏

∞

−∞

d𝜏. (7) 

Thus, for a three-phase current 𝐼𝑛 = [𝐼𝑛𝐴, 𝐼𝑛𝐵, 𝐼𝑛𝐶]
𝑇 , where 𝐼𝑛𝐴 =

𝐴𝐼𝑛𝐴𝑒
𝑗𝜓𝐼𝑛𝐴(𝑡). Similarly, 𝑉𝑛 can be expressed as 𝑉𝑛 = [𝑉𝑛𝐴, 𝑉𝑛𝐵, 𝑉𝑛𝐶]

𝑇, where 

𝑉𝑛𝐴 = 𝐴𝑉𝑛𝐴𝑒
𝑗𝜓𝑉𝑛𝐴(𝑡).  

3.2.2. Differences 

The changes of the nodal DC voltages and branch currents can be expressed as:  

 Δ𝑉𝑛 = 𝑉𝑛(𝑡) − 𝑉𝑛(𝑡 − 𝑤), (8) 

 Δ𝐼𝑛𝑝 = 𝐼𝑛𝑝(𝑡) − 𝐼𝑛𝑝(𝑡 − 𝑤), (9) 

where, 𝑤  is the analysis window size, 𝑛  and 𝑝  denote two arbitrary 

neighboring nodes.  

For the AC voltages and currents, considering the instantaneous features in 

Section 3.2.1, the differences can be expressed as:  

 Δ𝑉𝑛𝐴 = 𝐴𝑉𝑛𝐴(𝑡) − 𝐴𝑉𝑛𝐴(𝑡 − 𝑤), (10) 

 

 Δ𝐼𝑛𝑝𝐴 = 𝐴𝐼𝑛𝑝𝐴(𝑡) − 𝐴𝐼𝑛𝑝𝐴(𝑡 − 𝑤), (11) 

where only Phase A is showed, Phases B and C have the similar expressions. In 

the normal distribution power grids, the voltages and currents should be stable. 

If abnormal changes happen to Δ𝑉𝑛 and Δ𝐼𝑛𝑝, an event can be detected based 

on certain thresholding methods (Li et al., 2019b; 2019c). Here, instead of 

directly using the difference, we treat it as one dimension of the high-

dimensional detection metrics matrix.  

3.2.3. Unbalance 

In the AC power grids, single, two, or even three-phase issues could exist. The 

waveforms of Phases A, B, and C allow a relatively straightforward phase 

unbalance characterization based on direct comparisons of phase signal 

attributes. Based on the IA defined in Eq. (6), we define the current unbalance 

characterization functions 𝐼𝛼, 𝐼𝛽, and 𝐼𝛾 as:  
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 𝐼𝑛𝛼 =
1

3
∑ (

𝑖,𝑗∈{𝐴,𝐵,𝐶}

𝑖≠𝑗

𝐴𝐼𝑛𝑖 − 𝐴𝐼𝑛𝑗)
2. (12) 

 

 𝐼𝑛𝛽 =
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥
, (13) 

 

 𝐼𝑛𝛾 = ∑ Γ

𝑖,𝑗∈{𝐴,𝐵,𝐶}

𝑖≠𝑗

(𝐴𝐼𝑛𝑖 , 𝐴𝐼𝑛𝑗), (14) 

where, 𝐼𝑛,𝑚𝑎𝑥 = max { 𝐴𝐼𝑛𝐴 , 𝐴𝐼𝑛𝐵 , 𝐴𝐼𝑛𝐶} and 𝐼𝑛,𝑚𝑖𝑛 = min { 𝐴𝐼𝑛𝐴 , 𝐴𝐼𝑛𝐵 , 𝐴𝐼𝑛𝐶}, 

Γ denotes a thresholding function to measure the difference. If 𝐼𝛽 is not zero, 

there exists an unbalance among the three phases. Then we use 𝐼𝛾 to determine 

how many phases are affected and 𝐼𝛼  to measure the absolute changes. 

Similarly, we can also get 𝑉𝛼, 𝑉𝛽, and 𝑉𝛾.  

3.3. High-dimensional Data Matrix Construction 

In Section 3.1, we build a data matrix 𝑋 in general, and 𝑋 ∈ ℝ𝑘×𝑛 with 𝑛 

being the number of data samples and 𝑘 being the number of sensors. Because 

of the feature extraction in Section 3.2, the streaming data from one node on an 

AC distributed power grid become high dimensional instead of just one. For a 

DC node, the feature matrix is [𝑉, 𝐼, Δ𝑉, Δ𝐼]𝑇, while an AC node has the matrix 

[𝐴𝑉𝐴 , 𝐴𝑉𝐵 ,  𝐴𝑉𝐶 , 𝐴𝐼𝐴 , 𝐴𝐼𝐵 , 𝐴𝐼𝐶 , Δ𝑉𝐴, Δ𝑉𝐵, Δ𝑉𝐶 , Δ𝐼𝐴, Δ𝐼𝐵, Δ𝐼𝐶 , 𝑉𝛼, 𝑉𝛽 , 𝑉𝛾, 𝐼𝛼 , 𝐼𝛽 , 𝐼𝛾]
𝑇 . 

Note that for a node, the current measurements could be more than one as the 

connections with other nodes can be multiple. So the listed matrices are still 

general formats. In reality, the feature matrices will have even larger dimensions. 

In short, the detection data matrix combines all the feature matrices from all the 

nodes in the networks and will be used for attack detection and root cause 

diagnosis. Thanks to the recent growth in wireless communication, monitoring 

data, even over a large area can be efficiently collected (Parikh et al., 2010).  

3.4. Attack Detection Model 

Without loss of generality, we assume that there are various states of PV 

systems, including the normal state and under-attack states with various attack 

types. Because it is difficult to accurately detect and identify various types of 

attacks simultaneously, we propose to first focus on detecting whether the PV 

system is under attack or not. We apply the one-class detection as the attack 

detection model, which has been widely applied for outlier detection to 

accurately classify the normal and under-attack states (Maglaras and Jiang, 

2014). Training a one-class detection model only requires normal data, which 

is an advantage for a potentially large number of attacks.  
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Our proposed detection model is expressed as  

 𝑔(𝒙(𝑡)) = sgn (𝒢∗(𝒙(𝑡)) − 𝜌), (15) 

where 𝒙(𝑡) denotes a vector of time series of smart grid sensor data from 𝑡 −
𝐿 to 𝑡. 𝒢∗ is the trained one-class model. 𝜌 is the detection error threshold 

(DET), so if the prediction error is larger than DET, it may indicate an anomaly. 

A sign function is defined as  

 sgn ( 𝛼):= {
1 if 𝛼 ≥ 0,
−1 if 𝛼 < 0.

. (16) 

 

3.5. Attack Diagnosis Model 

The attack identification is actually a classification model based on a multi-

classification model to identify attack types. Nevertheless, the seriousness of 

the same type of attack is also important but has not been well explored. Also, 

the cross-entropy loss function often in practice means a cross-entropy loss 

function for classification problems and a mean squared error loss function for 

regression problems (Goodfellow et al., 2016). Therefore, to analyze not only 

the attack types but also the seriousness, we propose a cross-entropy loss 

between the empirical distribution defined by the training set and the probability 

distribution defined by the model, following  

 𝐽(𝜃) = −𝔼𝑥,𝑦∼𝑝data log 𝑝model (𝒚|𝒙). (17) 

 

3.6. Multilayer LSTM based Deep Sequence Learning 

Since we try to model electric waveform data which have complicated non-

linear temporal characteristics, we leverage the LSTM model. The structure of 

the recurrent neural network (RNN) utilizes the information memory at the 

previous time to apply to the current sequence data prediction. However, RNN 

training long sequences in a multilayer network will generate gradient 

disappearance and explosion (Bengio et al., 1994). While LSTM uses the 

concept of the gate structure to control the state of the unit layer at each time to 

retain the data information. The benefits of LSTM cells are in using the guided 

gates for selectivity, remembering both short and long-term behaviors across 

many time series, which effectively solves the problem of gradient diffusion 

and explosion. Fig. 4 shows the proposed MLSTM architecture, which not only 

remembers sequential information but also carries out more rigorous screening 

of time information. So, we can generalize the behavior complexity of the PV 

system without a huge dataset. Specifically, hyperparameters for MLSTM 

models are batch size = 128, learning rate = 0.001, hidden size = 32, optimizer 

= Adam, number of layers = 2 (detection) / 5 (diagnosis), which. The parameters 

are obtained through experiments and trials. Note that CNN shares most of the 

hyperparameters of MLSTM in our study.  
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Figure 4. Proposed multilayer LSTM architecture. 

4. Algorithm 

Based on the theories introduced in Section 3, we propose an online high 

dimensional data-driven cyber-attack detection and diagnosis algorithm, whose 

workflow is shown in Fig. 5.  

 
Figure 5. Workflow of the proposed approach. The attack detection is highlighted 

with red shadow, and the attack diagnosis result is in yellow. 

First, electric waveform data are obtained continuously to construct 

streaming data. As the streaming data are measured from the sensors in the 

distribution power networks, the streaming data matrix has high dimensions 

with AC and DC voltages and currents. Before the feature extraction, a typical 

pre-processing operation filters out the noise interferences and conditions the 

data if data samples are missing or timestamps are not stable. Using the Eqs. (6) 

to (14), from the high dimensional data matrix, we build a high dimensional 

feature matrix, whose dimension is even higher. Based on the MLSTM attack 
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detection model, the abnormal changes in the feature matrix can be detected. 

Otherwise, if there is no anomaly, the whole system will analyze the next 

streaming data segmentation. Once an anomaly is detected, we apply the 

diagnosis model to identify the attack types. The advantage of using an attack 

detection step before the attack diagnosis is the efficiency, as the diagnosis is 

more time and computation consuming than the detection.  

5. Simulation 

A simulation-based on MATLAB Simulink, 400kW Grid-Connected PV Farm 

Network, is conducted to generate waveforms of some typical fault in small 

scale power network. The main power grid is modeled as an ideal voltage source, 

and the load is linear. One rate voltage of 260𝑉/25𝑘𝑉, 400kVA, transformer 

connects the PV farm, which includes four DC/DC converters and one DC/AC 

inverter, to the power grid. The power network topology is shown in Fig. 6.  

 

 
Figure 6. Simulation topology of a 400 kW Grid-Connected PV Farm Network. 

The power grid is modeled as an ideal voltage source with a rated voltage of 

120 kV and connected to the sub-transmission network with a rated voltage of 

25 kV through a 47 MVA power transformer. The PV farm includes four solar 

blocks, each of them connected to the DC bus through a DC/DC converter. A 

three-phase inverter is adopted to transfer the DC power to the AC. To match 

the voltage level of the sub-transmission system, a 400 kVA power transformer 

is used to connect the PV farm and the sub-transmission system. Moreover, four 

linear loads are modeled in the system: 30 MW on Bus 4, denoted the power 

grid load, 100 kW and 2 MW on Bus 5 and Bus 6, denoted the sub-transmission 

system loads, and 40 kvar reactive power compensation on Bus 1 as well as a 2 

Mvar reactive power compensation on Bus 4, modeled as capacitive power 

loads. Under normal operation conditions, the voltage and current waveforms 

of Bus 2 are shown in Fig. 7. 
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Here, cyber-attacks on the DC/DC controller sensor only change the 

current and voltage of the PV panel. Following the cyber-attack model in Eq. (4), 

𝛼𝑉 and 𝛼𝐼 represent the fake measurement coefficient of voltage and current 

in the PV panel. (𝛼𝑉, 𝛼𝐼) ∈ [(0,0), (2,3), (2,0.3), (0.5,3), (0.5,0.3)]. For the 

DC/AC controller, the cyber-attacks inject a time delay into sensor feedback, 

𝑡𝑑𝑒𝑙𝑎𝑦 ∈ [0,4𝑚𝑠, 6𝑚𝑠, 8𝑚𝑠, 10𝑚𝑠, 12𝑚𝑠, 14𝑚𝑠]. 

Considering the uncertainty of cyber-attacks, the attacks happened at 

different time are simulated in our model, such as phase angles 

0∘, 30∘, 60∘, 90∘, 120∘, 150∘, 180∘ . To test the robustness of the proposed 

method towards different conditions, we also consider the irradiation impact on 

power generation. The irradiation on the PV panel varies in the ranges of 900, 

941, 967, 988, 1000 w/m2. Thus, more than 3,900 training samples are simulated. 

The waveform at the point of common coupling is obtained to verify our 

proposed method. The sampling frequency is 50k Hz, and 0.5 seconds (s) data 

are simulated for each scenario, which has 25001 samples. Note that, to clearly 

illustrate details, we only plot 0.1 s data around the event time in Figs. 7~12. 

 

   
Figure 7. Normal operation condition waveforms of (left) the voltage and (right) 

current on Bus 2. 

Using the simulation system described above, we simulate typical cyber-

attack conditions, each of which has featured waveforms. Short circuit fault is 

one of the most common physical faults in power systems, which could be 

caused by human behaviors and natural hazards, such as maloperations, cyber-

attacks, storms, and lighting. The outcomes of short circuit faults depend on 

many factors such as fault location, short fault type, and severe degree damage. 

So, four different short circuit faults are simulated.  

Main grid grounded short circuit fault: A single-phase grounded short circuit 

fault of Bus 4 results in distortion of the voltage and the current. The waveform 

of Bus 4 is shown in Fig. 8, it is easy to note that this fault causes transient 

impacts on currents and spike voltage and steady-state asymmetric components.  
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Figure 8. Main grid single phase grounded short circuit fault waveforms of (left) the 

voltage and (right) current on Bus 4. 

Solar transformer grounded short circuit fault: The short circuit faults 

happen on Bus 2, which can be single-phase or double-phases. A double-phase 

(phase a and phase b) grounded short circuit fault waveforms of Bus 4 are shown 

in Fig. 9. Note that the fault current is even more severe than that from the main 

grid fault described above.  

 
Figure 9. Solar transformer double phases (phase a and phase b) grounded short 

circuit fault waveforms of (left) the voltage and (right) current on Bus 2. 

Extra reactive power compensation in solar system: Fig. 10 shows the 

waveforms of Bus 1 when the PV farm is injected extra reactive power 

compensation, which is possibly caused by false data injection in the control 

center. In the simulation model, extra reactive power is modeled as a capacitive 

power load and injected to Bus 1, which could be caused by maloperations and 

purposeful attacks.  
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Figure 10. Extra reactive power compensation in solar system waveforms of (left) the 

voltage and (right) current on Bus 1. 

PV farm inverter attacked: The solar inverter hacked situation is simulated. 

A 1 ms delay is added to the inverter controller signal to simulate the “data 

integrity” attack (Yang et al., 2019). The waveforms of Bus 1 are shown in 

Fig. 11.  

 
Figure 11. PV farm inverter attacked waveforms of (left) the voltage and (right) 

current on Bus 1. 

30MW linear load cut off: Heavy load cutting off is another common fault in 

the power system which, could be caused by the integrity attack to the control 

center. When a heavy load is cut off in a short period, the power system will 

generate severe oscillations. The waveforms of Bus 4 are shown in Fig. 12.  
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Figure 12. 30 MW linear load cut off waveforms of (left) the voltage and (right) 

current on Bus 4. 

6. Evaluation 

6.1. Pre-processing and Feature Extraction 

The first step of the proposed algorithm is the normalization. Because our 

approach is based on matrix structure analysis, the unbalanced amplitudes 

among different observations will influence the following statistical analysis. 

Thus, we normalize the data matrix before the feature extraction, and one 

example of the main grid grounded short circuit fault in Fig. 8 is shown in 

Fig. 13. Note that, the AC components are normalized according to their IAs, 

while DC components are based on their maximum and minimum values in the 

segments. There are six nodes (5 AC nodes and 1 DC node) in Fig. 6, so the 

vectors in the data matrix are aligned following the node number. 

 
Figure 13. Data matrix normalization in the situation of main grid grounded short 

circuit fault. (Left) Raw waveform matrix; (Right) Normalized waveform matrix. Each 

vector corresponds to one voltage or current waveform, which is either one phase of 

AC components or one DC component. As there are 5 AC nodes and 1 DC node, the 

data matrix dimension is 32. 

15

Li et al.: Cybersecurity Strategy against Cyber Attacks towards Smart Grids

Published by DigitalCommons@Kennesaw State University, 2020



Based on the normalized data matrix, we extract the feature matrix 

according to Section 3.2. Since AC components generate instantaneous features, 

differences, and unbalances, while DC components do not have the unbalance 

features, the dimension of feature matrix is 32+32+30=94, shown in Fig. 14. 

With the sophisticated the feature extraction, the latent data structure 

information is better characterized, and the attack detection robustness can also 

be improved. Comparing Fig. 13 and Fig 14, it is clear that the feature matrix 

exhibits more information of the data anomaly than the original data matrix, 

which is valuable for attack detection and diagnosis.  

Figure 14. Feature matrix extracted from the normalized waveform matrix shown 

in Fig. 13. The total dimension is 94, including 32 columns of instantaneous features, 

32 columns of differences, and 30 columns of unbalances. 

6.2. Comparison Models 

To validate the performances of the proposed MLSTM method, classic machine 

learning and deep learning models, such as KNN, SVM, DT, ANN, and CNN, 

are compared, which are powerful data-driven methods with a wide range of 

applications (Goodfellow et al., 2016). For the machine learning models, data 

features, such as frequency, amplitude, phase angle (because of AC waveform), 

spectrum properties, are extracted. For deep learning models, data streams are 

managed to be fed into models. We implemented them through Pytorch 

(1.3.1) (Paszke et al., 2017) and Sklearn (0.22.1) (Pedregosa et al., 2011) on an 

Ubuntu 16.04 server (CPU: i7-6850K, 3.60 GHz, RAM 64GB) armed with GPU 

(GeForce GTX 1080 Ti). For the validation purpose, we utilize ten-fold 

randomized cross-validation with 80% training data and 20% testing data for 

the model training. To quantitatively evaluate method performances, we employ 

accuracy, precision, recall, and F1 score, which are obtained from the confusion 

matrix for detection and classification evaluation (Li et al., 2019a). We adopt 

an offline training and online testing strategy.  
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6.3. Metrics 

To quantitatively evaluate method performances, we employ accuracy, 

precision, recall, and F1 score, which are obtained from the confusion matrix 

for detection and classification evaluation (Li et al., 2019a). The confusion 

matrix has indexes of True Positive (TP), False Positive (FP), False Negative 

(FN), and True Negative (TN). Precision (TP/(TP+FP)) that represents the true 

fault detection rate is expected to be as high as possible, because the higher 

precision is, the less false alarm. Recall (TP/(TP+FN)) represents the ability to 

find all data points of interest. In our case, the higher recall is, the more true 

attacks are detected. Similarly, F1 (2TP/(2TP+FP+FN)=2 precision 

recall/(precision+recall)) that represents the combination property of precision 

and recall is expected to be as high as possible.  

Figure 15. (a) CNN and (b) MLSTM loss curves in the attack diagnosis with window 

length 100 (0.1 s). 

6.4. Attack Detection Performance Evaluation 

In the attack detection stage, all data-driven models are trained under the one-

class model structure, which is simple with efficient computations. So, the 

attack detection model has ensured its applicability in practice and thus achieves 

a real-time manner. Table 1 shows the evaluation metrics: accuracy, recall, 

precision, and F1 score. In order to further characterize the model sensitivity, 

we also test the analysis window with different window lengths. It is clear that 

the proposed MLSTM achieves the best performances in terms of all metrics, 

with only two layers. SVM cannot achieve good performance, maybe because 

the data structure is too complicated. KNN and DT show acceptable 

performances, but not as good as CNN and MLSTM. Due to the shallow model 

depth, ANN does not show ideal performances, while CNN achieves very good 

performances with only two layers. Compared with CNN, MLSTM achieves 

high detection accuracy even when the window size is 50 (0.05 s), and with 

longer analysis window length, MLSTM can even do better.  
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6.5. Attack Diagnosis Performance Evaluation 

Different from attack detection where only normal and abnormal data are 

labeled, attack diagnosis requires more detailed data analysis. Because of the 

data unbalance that normal condition has a large amount of available data. At 

the same time, each attack scenario only has limited available data, the accuracy 

of all data-driven models is high, but some have really bad recall, precision and 

F1 scores, as listed in Table 2. However, MLSTM and CNN still show the 

advantages of deep learning models even with five layers. Besides the slightly 

better performances in terms of metrics compared with CNN, MLSTM has 

another advantage. Fig. 15 displays the training and testing performances of 

CNN and MLSTM with the same analysis window length. MLSTM shows a 

smoother loss curve, which means it potentially has better model robustness and 

stable performances. Notice that MLSTM demonstrates the best performances 

when the analysis window size is 80 or 100. Although the metrics achieved 

other peaks with window size 200, that would be overfitting on interferences.  

Table 1. Detection performance evaluation using metrics (Accuracy, F1, recall and 

precision). 

Window Size  50  80  100  

SVM  0.79/0.47/0.31/0.96  0.77/0.43/0.28/0.97  0.75/0.42/0.27/0.96  

KNN  0.90/0.83/0.83/0.84  0.91/0.85/0.86/0.85  0.91/0.87/0.87/0.87  

DT  0.92/0.86/0.81/0.92  0.92/0.86/0.82/0.92  0.91/0.87/0.86/0.88  

ANN  0.85/0.85/0.81/0.85  0.91/0.91/0.90/0.91  0.91/0.91/0.90/0.91  

CNN  0.93/0.93/0.91/0.93  0.97/0.97/0.97/0.97  0.97/0.97/0.97/0.97  

MLSTM  0.97/0.97/0.96/0.97  0.98/0.98/0.97/0.98  0.98/0.98/0.97/0.98  

Window Size 140  160  200   

SVM  0.71/0.36/0.22/0.96  0.69/0.36/0.22/0.97  0.67/0.34/0.21/0.98   

KNN  0.90/0.87/0.87/0.87  0.89/0.86/0.87/0.86  0.88/0.86/0.85/0.87   

DT  0.91/0.89/0.91/0.87  0.93/0.91/0.92/0.91  0.93/0.92/0.94/0.89   

ANN  0.85/0.85/0.85/0.86  0.82/0.82/0.80/0.82  0.75/0.73/0.70/0.78   

CNN  0.94/0.94/0.93/0.94  0.95/0.95/0.95/0.95  0.97/0.97/0.97/0.97   

MLSTM  0.97/0.97/0.97/0.97  0.97/0.97/0.96/0.97  0.98/0.98/0.98/0.98   

 

 

Table 2. Diagnosis performance evaluation using metrics (Accuracy, F1, recall and 

precision). 

Window Size  50  80  100  

SVM  0.95/0.12/0.11/0.12  0.94/0.03/0.02/0.09  0.95/0.11/0.11/0.12  

KNN  0.95/0.02/0.02/0.02  0.94/0.01/0.01/0.01  0.95/0.02/0.01/0.02  

DT  0.95/0.12/0.12/0.12  0.95/0.06/0.05/0.06  0.95/0.12/0.12/0.12  

ANN  0.95/0.10/0.09/0.10  0.95/0.09/0.08/0.10  0.96/0.11/0.11/0.11  

CNN  0.91/0.83/0.83/0.84  0.95/0.90/0.87/0.93  0.95/0.94/0.91/0.97  

MLSTM  0.97/0.93/0.90/0.96  0.97/0.94/0.93/0.96  0.98/0.95/0.92/0.97  

Window Size 140  160  200   

SVM  0.93/0.01/0.01/0.11  0.93/0.01/0.01/0.14  0.93/0.08/0.08/0.08   
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KNN  0.93/0.01/0.01/0.02  0.93/0.01/0.01/0.01  0.92/0.01/0.01/0.01   

DT  0.93/0.04/0.03/0.04  0.93/0.04/0.03/0.05  0.93/0.06/0.06/0.06   

ANN  0.94/0.06/0.03/0.13  0.94/0.06/0.05/0.08  0.93/0.12/0.12/0.12   

CNN  0.95/0.92/0.90/0.95  0.96/0.93/0.90/0.96  0.97/0.96/0.96/0.96  

MLSTM  0.96/0.92/0.91/0.94  0.96/0.93/0.90/0.96  0.98/0.97/0.96/0.97   

 

7. CONCLUSION 

Solar farms and other renewable energy sources bring potential attack 

vulnerabilities to distribution power networks. We propose a cyber security 

mechanism by combining a one-class detection model and an attack diagnosis 

model, which are tailored for electric waveform profiles of a solar PV smart 

grid for real-time attack detection and identification. First, an analysis was 

conducted on cyber-attacks on the smart grid with solar PV farm embedded. 

Features of the streaming waveform data are constructed to be an analysis 

matrix, which has the inherent data structure. Then, an MLSTM based 

comprehensive approach was developed. We apply the one-class detection 

model to detect whether a PV farm is under attack or not. When it is detected to 

be under attack, we identify the attack type by leveraging the attack diagnosis 

model. The proposed mechanism has been evaluated using a MATLAB 

Simulink solar farm model and achieves much-improved attack detection and 

diagnosis performances. 

 

  

19

Li et al.: Cybersecurity Strategy against Cyber Attacks towards Smart Grids

Published by DigitalCommons@Kennesaw State University, 2020



CITATIONS 

 
Amini, S., Pasqualetti, F., and Mohsenian-Rad, H. (2015). Detecting dynamic load altering 

attacks: A data-driven time-frequency analysis. In 2015 IEEE International Conference on 

Smart Grid Communications (SmartGridComm), pages 503–508. IEEE. 

Balda, J. C., Mantooth, A., Blum, R., and Tenti, P. (2017). Cybersecurity and power electronics: 

Addressing the security vulnerabilities of the internet of things. IEEE Power Electronics 

Magazine, 4(4):37–43. 

Beg, O. A., Johnson, T. T., and Davoudi, A. (2017). Detection of false-data injection attacks in 

cyber-physical dc microgrids. IEEE Transactions on industrial informatics, 13(5):2693–2703. 

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradient 

descent is difficult. IEEE transactions on neural networks, 5(2):157–166. 

Cao, Y., Davis, K., and Zonouz, S. (2018). A framework of smart and secure power electronics 

driven HVAC thermal inertia in distributed power systems. In 2018 IEEE Green 

Technologies Conference (GreenTech), pages 127–132. IEEE. 

Chen, B., Mashayekh, S., Butler-Purry, K. L., and Kundur, D. (2013). Impact of cyber-attacks 

on transient stability of smart grids with voltage support devices. In 2013 IEEE Power & 

Energy Society General Meeting, pages 1–5. IEEE. 

Esmalifalak, M., Liu, L., Nguyen, N., Zheng, R., and Han, Z. (2014). Detecting stealthy false 

data injection using machine learning in smart grid. IEEE Systems Journal, 11(3):1644–1652. 

Ferreira, D. D., de Seixas, J. M., Cerqueira, A. S., Duque, C. A., Bollen, M. H. J., and Ribeiro, 

P. F. (2015). A new power quality deviation index based on principal curves. Electric Power 

Systems Research, 125:8–14. 

Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning to forget: Continual prediction 

with lstm.  

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press. 

Isozaki, Y., Yoshizawa, S., Fujimoto, Y., Ishii, H., Ono, I., Onoda, T., and Hayashi, Y. (2016). 

Detection of cyber-attacks against voltage control in distribution power grids with PVs. IEEE 

Transactions on Smart Grid, 7(4):1824–1835. 

Li, F., Clemente, J., Valero, M., Tse, Z., Li, S., and Song, W. (2019a). Smart home monitoring 

system via footstep-induced vibrations. IEEE Systems Journal, pages 1–7. Early access. 

Li, F., Shi, Y., Shinde, A., Ye, J., and Song, W.-Z. (2019b). Enhanced cyber-physical security 

in internet of things through energy auditing. IEEE Internet of Things Journal, 6(3):5224–

5231. 

Li, F., Shinde, A., Shi, Y., Ye, J., Li, X.-Y., and Song, W.-Z. (2019c). System statistics learning-

based IoT security: Feasibility and suitability. IEEE Internet of Things Journal, 6(4):6396–

6403. 

Li, F., Xie, R., Yang, B., Guo, L., Ma, P., Shi, J., Ye, J., and Song, W. (2019d). Detection and 

identification of cyber and physical attacks on distribution power grids with PVs: An online 

high-dimensional data-driven approach. IEEE Journal of Emerging and Selected Topics in 

Power Electronics, pages 1–10. Early Access. 

Liu, H., Hussain, F., Shen, Y., Arif, S., Nazir, A., and Abubakar, M. (2018). Complex power 

quality disturbances classification via curvelet transform and deep learning. Electric Power 

Systems Research, 163:1–9. 

20

KSU Proceedings on Cybersecurity Education, Research and Practice, Event 1 [2020]

https://digitalcommons.kennesaw.edu/ccerp/2020/Research/1



Liu, K., Gebraeel, N. Z., and Shi, J. (2013). A data-level fusion model for developing composite 

health indices for degradation modeling and prognostic analysis. IEEE Transactions on 

Automation Science and Engineering, 10(3):652–664. 

Liu, X., Shahidehpour, M., Cao, Y., Wu, L., Wei, W., and Liu, X. (2016). Microgrid risk 

analysis considering the impact of cyber-attacks on solar pv and ess control systems. IEEE 

transactions on smart grid, 8(3):1330–1339. 

Liu, X., Shahidehpour, M., Cao, Y., Wu, L., Wei, W., and Liu, X. (2017). Microgrid risk 

analysis considering the impact of cyber-attacks on solar pv and ess control systems. IEEE 

Transactions on Smart Grid, 8(3):1330–1339. 

Lu, X., Chen, B., Chen, C., and Wang, J. (2018). Coupled cyber and physical systems: 

Embracing smart cities with multistream data flow. IEEE Electrification Magazine, 6(2):73–

83. 

Maglaras, L. A. and Jiang, J. (2014). A real time ocsvm intrusion detection module with low 

overhead for SCADA systems. International Journal of Advanced Research in Artificial 

Intelligence, 3(10). 

Mahela, O. P., Shaik, A. G., and Gupta, N. (2015). A critical review of detection and 

classification of power quality events. Renewable and Sustainable Energy Reviews, 41:495–

505. 

Parikh, P. P., Kanabar, M. G., and Sidhu, T. S. (2010). Opportunities and challenges of wireless 

communication technologies for smart grid applications. In IEEE PES General Meeting, 

pages 1–7. IEEE. 

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., 

Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., 

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, 

M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal 

of Machine Learning Research, 12:2825–2830. 

Sahoo, S., Mishra, S., Peng, J. C.-H., and Dragicevic, T. (2018). A stealth cyber-attack detection 

strategy for dc microgrids. IEEE Transactions on Power Electronics, 34(8), 8162-8174. 

Sarangan, S., Singh, V. K., and Govindarasu, M. (2018). Cyber-attack-defense analysis for 

automatic generation control with renewable energy sources. In 2018 North American Power 

Symposium (NAPS), pages 1–6. IEEE. 

Shi, Y., Li, F., Song, W., Li, X.-Y., and Ye, J. (2019). Energy audition based cyberphysical 

attack detection system in iot. In ACM Turing Celebration Conference - China (TURC), 

pages 1–5. 

Sridhar, S. and Govindarasu, M. (2014). Model-based attack detection and mitigation for 

automatic generation control. IEEE Transactions on Smart Grid, 5(2):580–591. 

Tan, S., De, D., Song, W., Yang, J., and Das, S. (2017). Survey of Security Advances in Smart 

Grid: A Data Driven Approach. IEEE Communications Surveys and Tutorials, 18(1):397–

422. 

Tian, J., Wang, B., and Li, X. (2018). Data-driven and low-sparsity false data injection attacks 

in smart grid. Security and Communication Networks, 2018. 

Xun, P., Zhu, P., Zhang, Z., Cui, P., and Xiong, Y. (2018). Detectors on edge nodes against 

false data injection on transmission lines of smart grid. Electronics, 7(6):89. 

Yang, B., Li, F., Ye, J., and Song, W. (2019). Condition Monitoring and Fault Diagnosis of 

Generators in Power Networks. In IEEE Power & Energy Society General Meeting. 

21

Li et al.: Cybersecurity Strategy against Cyber Attacks towards Smart Grids

Published by DigitalCommons@Kennesaw State University, 2020



Ye, J., Yang, X., Ye, H., and Hao, X. (2010). Full discrete sliding mode controller for three 

phase pwm rectifier based on load current estimation. In 2010 IEEE Energy Conversion 

Congress and Exposition, pages 2349–2356. IEEE. 

Zhang, H., Meng, W., Qi, J., Wang, X., and Zheng, W. X. (2019). Distributed load sharing 

under false data injection attack in an inverter-based microgrid. IEEE Transactions on 

Industrial Electronics, 66(2):1543–1551. 

Zhou, Y., Arghandeh, R., and Spanos, C. J. (2018). Partial knowledge data-driven event 

detection for power distribution networks. IEEE Transactions on Smart Grid, 9(5):5152–5162.  

22

KSU Proceedings on Cybersecurity Education, Research and Practice, Event 1 [2020]

https://digitalcommons.kennesaw.edu/ccerp/2020/Research/1


	Cybersecurity Strategy against Cyber Attacks towards Smart Grids with PVs
	

	
	Abstract
	Location
	Disciplines
	Comments

	tmp.1600977642.pdf.F6yeM

