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Abstract: The use of seismic arrays as a tool for imaging subsurface infrastructures
and monitoring the corresponding underground activities enables real-time subsurface
security and surveillance applications. However, the existing approach relies on manual
data collection and centralized computing, which may not work in communication-denied
environments. These approaches may take a long time to get useful results. In this paper,
we present a real-time smart seismic imaging system based on Ambient Noise Imaging
on Networks (ANION) for a variety of subsurface infrastructure imaging applications.
The proposed approach integrates in-situ signal processing techniques as well as inter-
nodes communication and cooperation to obtain reliable velocity maps for subsurface
characterization and monitoring. It generates real-time subsurface images by taking
advantage of collective computation power in sensor networks while avoiding transferring
all raw data to a central place or server. ANION system is autonomous, self-healing,
scalable and independent of external interventions. Field tests demonstrate that such a
system can detect underground pipelines and potentially its leakage that has important
implications on infrastructure security. The uses can be extended to other applications
like border security, building monitoring, underground water detection for agriculture,
etc. An exhaustive evaluation regarding bandwidth utilization and communication cost
were conducted to highlight the benefits of the proposed approach.
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1 Introduction

Seismic array is an effective tool for monitoring
subsurface structures and activities. The ability to “see”
through the ground would enable many infrastructure

security applications. For instance, water companies are
under constant pressure to ensure the water leakage
keeps to a minimum. Many techniques to detect water
leakage require an invasive approach where sensors
need to be installed directly on the pipelines (Almeida
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et al., 2015). A non-invasive and efficient way to detect
pipelines and capture the velocity variation produced
by external elements like water is crucial for civil
engineering security applications. Furthermore, if it is
possible to see under the ground, many subsurface issues
can be addressed; for example, tunnel detection for
homeland /border security, building foundation status
monitoring for infrastructure security, etc.

Seismic tomography is one way to imaging subsurface
based on the analysis of the subsurface waveform
propagation. The type of tomography based on
ambient noise cross-correlation is called Ambient Noise
Tomography (ANT) (Ritzwoller et al., 2011). In
ANT, the data recovered from ambient seismic noise,
which implies no need for active energy sources like
earthquakes. By correlating the ambient noise signal
from two or more different locations, seismic sensors can
estimate a subsurface image of the area.

The problem is that existing ANT solutions rely
on a centralized approach for processing the raw
data captured by seismic sensors. The data are
gathered manually or relayed by expensive broadband
stations, and then processed at a base station.
These approaches are time-consuming, and the final
tomography is obtained in weeks, even months.
Furthermore, collecting data in one central place may
not work in communication-denied environments where
the external computing infrastructure cannot be relied
on. Real-time seismic imaging within sensor networks
(Kamath et al., 2016; Zhao et al., 2015; Kamath et al.,
2015; Shi et al., 2013; Kamath et al., 2015; Valero et al.,
2017, 2018; Song et al., 2019) enables unprecedented
Intelligence, Surveillance, Target Acquisition, and
Reconnaissance (ISTAR) of underground/underwater
structures, targets and activities.

Pipelin

Figure 1 Some potential subsurface security applications
using seismic sensor networks system for
subsurface imaging: pipeline detection, tunnel
detection, infrastructure security monitoring.

In this paper, we present a smart wireless seismic
network system that uses seismic sensors to perform
a tomography of the subsurface based on ambient

noise cross-correlation measurements. The system is
able to produce a subsurface image that represents
the underground velocity variations when smart seismic
sensors are deployed over the area to study (Fig. 1),
and they use wireless network communication and in-
situ computing. There is no need of gathering data
to a central place since the sensors use collaborative
and distributed computing to share only pre-processed
information to generate the final tomography. The
system has been called ANION, ambient noise seismic
imaging on networks, and it will be referred with this
name in the rest of the paper.

ANION is an end-to-end system, fully configurable,
that can be wused to imaging shallow subsurface
infrastructures and provide information for security
purposes. For example, ANION can provide real-time
images of underground pipelines; this information can be
useful for determining if there exists a water leakage in
that pipe. ANION can provide images of shallow tunnels,
and this information can be important for border
security decision-making. Many other applications on
subsurface infrastructure security can also be benefited.

Our system integrates in-situ signal processing
techniques and inter-nodes communication and
cooperation to obtain reliable velocity maps for
geophysics and engineering investigations. We generate
real-time images by taking advantage of the new
generation of sensors and without the need of
transferring all raw data to a central place or server.

The main contributions of this paper can be
summarized as follows: (i) a system that performs
subsurface imaging and achieves real-time results using
in-situ computing and distributed sensor collaboration;
this implies eliminating the need to send raw data
to a server for post-processing, (ii) a system that
can be easily adapted to a broad range of subsurface
security /monitoring applications with minimal user
intervention or system modifications, (iii) a system
that takes advantage of ambient noise theory instead
of using active sources (earthquakes or explosions)
for illuminating the subsurface, (iv) a system that
can meet network bandwidth constraints while reduces
communication cost between sensors.

The rest of the paper is organized as follows: section
section 2 provides needed information of ANT and
surveys different kind of applications that use ambient
noise data for security purposes, section 3 provides
details of the system design, fundamental principles of
the proposed solution and the details of our algorithm,
section 4 introduces the hardware and software we use
to develop ANION system. Section 5 shows the in-field
experiments of our system. We discuss the results and
highlight the benefits of the system regarding bandwidth
utilization, communication cost, and link reliability. We
conclude the paper in section 6.
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2 Background

In this section, we provide a needed background on the
basis of ANT and the potential and current applications
for infrastructure security purposes.

2.1 Ambient Noise Tomography (ANT)

Ambient noise tomography has become one of the fastest
growing research areas in seismology and exploration
geophysics. Compared to earthquake-based seismic
tomography methods, ambient noise tomography is
particularly useful in imaging shallow earth structures
(Lin et al., 2008; Moschetti et al., 2010). It can be
applied to regions with non-existent seismicity and
produces reliable measurements at frequencies that are
particularly difficult using earthquakes or explosions due
to scattering and attenuation. This advantage represents
an attractive cheap scenario since producing active
energy sources (explosions) in non-seismic areas is very
costly. Moreover, because of the persistent nature of the
seismic background noise, temporal variation of the earth
structure can be analyzed and monitored by studying
the variation in the noise cross-correlation function
(Brenguier et al., 2008; Duputel et al., 2009).

To perform tomography with ambient noise,
many methods can be wused, for example eikonal
tomography (Lin et al, 2009b), straight-ray
tomography  (Barmin et al, 2001), seismic
interferometry (Nicolson et al., 2012). All of them have
their own properties and mathematical formulation.
Even though these approaches have been successfully
applied, they lack real-time results. The cross-correlation
process needs at least several days for collecting data,
and then manual extraction is needed to gather the
information to a central server. Thus velocity maps may
take days or months in being generated. In this paper,
we took the principles of Eikonal Tomography, and we
modify the procedure to make them to perform in-situ
and distributed fashion. We developed ANT in networks
leading to ANION creation. With ANION approach,
many potential applications can be done in real-time
and with minimum user intervention.

2.2 Potential Applications

Traditional use of ambient noise imaging includes
the study of the subsurface at many different
scales for geophysical exploration or environmental
remediation (Mordret et al., 2013; de Ridder and
Dellinger, 2011; Tomar et al., 2018; Brenguier et al.,
2007). And, there is an increasing interest in structures
monitoring and anomaly detection.

Passive seismic monitoring based on ambient noise
assessment has been used for risk management and
reduction in many engineering applications. Stork et al.
(2018) investigated the potential to monitor seismic
velocity changes following a hypothetical leak of CO9
from Aquistore storage site in Saskatchewan, Canada

using passive monitoring methods. They showed the
map of near-surface velocities obtained with ambient
noise techniques could be useful for near-surface static
corrections when using active-source seismic reflection
surveys to image and monitor the reservoir. However,
further similar studies are required to assess leak
detection at other COs storage sites.

Liu et al. (2014) conducted an experiment to test
the idea of using ambient noise to characterize building
vulnerability for strong ground motions. By placing one
geophone on each floor in a building (from the basement
to the seventh floor), they were able to determine
shear wave velocities, which implies that the ambient
noise approach appears sensitive enough to reveal some
wave propagation difference and variations in a civil
infrastructure. Mordret et al. (2017) also measured the
shear velocity and the apparent attenuation factor of
a building using ambient noise techniques. They linked
the velocity variations with weather parameters. They
determined that the variation in velocities in the building
is intrinsically related to air humidity.

Olivier et al. (2015) also took advantage of ambient
noise techniques to investigate an active underground
mine (Garpenberg, Sweden) by cross-correlating seismic
noise generated by mining activities. Their study
revealed the existence of a high-velocity zone and a low-
velocity zone that corresponded with known ore bodies
inside the mine.

All these geophysics and engineering solutions using
ambient noise imaging make us argue that the ambient
noise can be treated as a new source that is economical,
practical, and particularly valuable for seismic hazard
mitigation and anomaly and activities detection in urban
and non-urban areas. It can also be viewed as a unified
source to characterize the near-surface sediment and
the infrastructure simultaneously. The main drawback of
these applications relies on the off-line data processing.
All of these solutions require gathering the ambient noise
data to a central place for further processing. This may
imply days or even months to get a result.

3 Algorithm and System Design

ANION is based on ambient noise tomography (Lin
et al., 2008; Moschetti et al., 2010), which studies the
temporal variation of the earth structure by analyzing
the variation in the noise cross-correlation function of
the signals in different sensors (Brenguier et al., 2008;
Duputel et al., 2009). As a widely used technique
in geophysical exploration for investigating structures
under the earth’s surface, ANION is based on the
recorded background raw ambient noise data. Lin et al.
(2008) discussed how to use surface wave (Rayleigh
wave) to image the shallow structures.

ANION design is built on top of a distributed
system architecture as shown in Fig. 2. In this section,
we explain the fundamental principles behind the
architecture work-flow of ANION. Every sensor performs
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Figure 2 Proposed distributed architecture for ANION.
One sensor perspective.

three stages in ANION: (i) data preparation, (ii) in-
situ signal processing, and (iii) collaborative imaging.
The majority of steps inside each stage are executed
in-situ, and some of them require communication with
neighbors via UDP (User Datagram Protocol). In
Fig. 2, process with wireless symbol represents inter-
node communication.

The data preparation and in-situ signal processing
are performed continuously during the time the sensors
are over the field and working. The collaborative imaging
is executed every T time (for example, every 2 hours). T
is a configured value in the configuration file.

3.1 Data Preparation

Every node senses the ambient noise from the medium.
We use smart seismic sensors (Section 4.1) that sense
ambient noise and record the raw data internally in
a database (for future analysis if needed). During the
data preparation, sensors perform a down-sampling
and data-cutting. That is, sensors take ¢ seconds or
minutes or data to analysis each time. For example,
if t =05 minutes, then every 5 minutes of data, the
sensors perform a down-sampling, a normalization
and a spectral whitening. ¢ is another configurable
parameter in the configuration file. The purpose of
normalization and spectral whitening is to accentuate
ambient noise by attempting to remove earthquake
signals and instrumental irregularities that tend to
hide the ambient noise. We use a running-absolute-
mean normalization (Bensen et al., 2007b). This method
computes the running average of the absolute of the
waveform in a normalization time window of fixed length
and weight the waveform at the center of the window by
the inverse of this average. Given a discrete time-series

. . . . o n+N
[, the normalization weight is wy, = 5575 > ;= N |fil

and the normalized datum is fn = fun/wy. The width of
the normalization window is 2N + 1. An example of data
preparation can be seen in Fig. 3.

3.2 In-situ signal processing

After data preparation, sensors perform data cross-
correlation with its neighbor nodes. For doing so, every
node broadcasts its prepared data to its neighbor
nodes. Prepared data includes a compression technique
for improving communication cost. The noise cross-
correlation C'4p between two stations is performed as:

Coanlt) = / T wa(Pus(t + )dr
o o (1)
=/ [—GAB(T)-i-GAB(—T)]dT.

—0o0

where u4 and up are the prepared signals at locations A
and B (Bensen et al., 2007a). Theoretical studies have
shown that if the noise wavefield is sufficiently diffusive,
the cross-correlation between two stations can be used to
approximate the Green’s function G 4p between the two
sensors or locations (Lobkis and Weaver, 2001; Snieder,
2004). Based on the noise cross-correlations, the period-
dependent surface wave phase and group travel time can
be determined between each pair of sensors.

Focusing on using the Rayleigh wave information, we
only calculate the cross-correlations between the vertical
components of a 3-component geophone. We stack the
cross-correlation result every ¢ time until complete T'.
Usually, the stacking/averaging enhances the signal-
to-noise ratio (SNR) and also effectively suppresses
the source distribution inhomogeneity. An example of
stacked cross-correlation can be seen in Fig. 3.

3.8 Collaborative Imaging

After stacking cross-correlation and the time T is
completed, sensors begin the collaborative imaging
stage. First, they perform a Frequency-Time Analysis
(FTAN) of the stacked cross-correlations. FTAN
generates the dispersion curve of the Rayleigh wave
phase velocity (Bensen et al., 2007b). A whole FTAN
process includes a series of Gaussian band-pass filters
to get Green’s function with different central frequencies
and transformation processes to get the envelope
function and phase function of time series data. For
each frequency, we can obtain the estimated travel time
between sensors using FTAN.

The eikonal and Helmholtz tomography methods is
adopted to determine 2D phase velocity maps based on
empirical wavefield tracking (Lin et al., 2009a; Lin and
Ritzwoller, 2011). For each event i, it measures surface
wave phase velocities at each location directly by the
spatial derivatives of the observed wavefield:

V2Ai (I‘)

= |V7'(ri,r)|2—W, (2)

ci(r)
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map of the interested area.

where 7 and A represent phase travel time and
amplitude measurements, and k; = V7(r;,r)c;(r), c and
w are direction of wave propagation, phase velocity
and angular frequency, respectively. k; can be derived
directly by solving 2D Helmholtz wave equation also
called eikonal equation, can be derived from equation 2
under infinite frequency approximation. While the above
equations are defined for ‘events,” it’s important to
note that the cross-correlation method from equation 1
effectively turns each sensor into an ‘event’ recorded at
every other sensor, and so the wavefield from virtual
sources at each sensor, as well as the spatial derivatives
in equations 2 can be approximated from the set of cross-
correlations with that sensor. This generates a 2D partial
velocity map at each sensor.

To aggregate the all partial velocity maps into the
final subsurface image, sensors form a tree structure
starting from a root node. The root node is configured
in the configuration file. The tree is constructed as a
Breadth-First Search (BFS) and depending on the tree
formed, the nodes leaf, intermediate and root aggregate
the maps. The final map is generated in the root node
after aggregation. The amount of data transmitted for
aggregating the final velocity maps is significantly less
than transmit raw data in the network. An example of a
final velocity map can be seen in Fig. 3.

3.4 Algorithm

We adapt the ANION methodology to compute the
velocity map in-situ, that is generating the velocity
map without sending the raw data to a central place
(Valero et al., 2017). We integrated all steps of the
ANION methodology in a system that allows automatic
subsurface imaging based on surface wave. The system
is an array of sensors that collect raw data from
the medium, performs in-situ signal processing, and
generates the subsurface imaging result (velocity map)
by using collaborative inter-nodes communication and
aggregation. In the end, we are able to distinguish
velocities differences that may indicate different elements
and/or activities under the subsurface by analyzing the
subsurface velocity map.

Distributed Cooperative
© — A " @

7.‘\_/ h g

Correlation —— "W"

Seismic Signal Seismic Signal

® /) =
‘T-.L/"

Figure 4 Sensor network performing ANION techniques
to generate a velocity map for pipeline detection.

The ANION system sketch is shown in Fig. 4. A
mesh network is formed and it (i) uses seismic sensors
to measure the vibration of the ambient noise; (ii)
calculates the cross-correlation of the signal waves with
neighbors and performing a frequency-time analysis to
obtain phase traveltime measurements of the ambient
noise signal; and (iii) employs a method known as
eikonal tomography (Lin et al., 2009b) to build velocity
maps. Algorithm 1 describes the distributed subsurface
imaging process based on the surface wave, which is
executed by every sensor in the network.

3.4.1 Input description

The input of Algorithm 1 is a pre-processed sensor data
after data preparation. Every node, after gathering raw
data, applies an in-situ pre-processing to prepare the
data to a suitable form for cross-correlation (Bensen
et al., 2007b). This preparation was explained in detail
in Section 3.1. Then, a compression process is required
to make the signal suitable to be transmitted to other
nodes. The configuration file is used to know the
parameters of the system; for instance, frequency of
interest and size of the grid for the final map.
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Algorithm 1: Distributed Subsurface Imaging
based on Surface Wave
Input: Pre-processed data ¥p and configuration file
Output: Collaborative velocity map (M).

1 repeat
2 Broadcast 0o to neighbors |n]| ;
3 Received from ¢ € |n| the pre-processed data 0;;
4 Apply cross-correlation (cco;) between 09 and
Vi € |n] ;
5 if t%T == 0 then
6 Apply Frequency-time Analysis to all cco;
where i € || ;
7 Obtain traveltime measurements 7o; ;
8 Interpolate 7o; onto a grid R of size x X y ;
9 Calculate slowness vector § for each point in R
10 Form a tree structure with other nodes in the
network ;
11 if the node is leaf then
12 Send via TCP § to its parent
13 end
14 if the node is intermediate node then
15 Receive via TCP §; from children nodes j;
16 Aggregate §; from all children nodes j with
§ and get new §;
17 Send via TCP § to its parent
18 end
19 if the node is root then
20 Receive via TCP 3; from children nodes j;
21 Aggregate §; from all children nodes j with
§ and get new §;
22 Calculate M = 1/3;
23 Output M
24 end
25 end

26 until total time of experiment is completed;

3.4.2 In-situ signal processing

The compressed signal is transmitted to neighbor
nodes via UDP communication using broadcasting
(line 2). Once every node receives their neighbors
pre-processed data, it performs the cross-correlation
between its own signal and its neighbors signal (line 4).
With the cross-correlation results, the node performs
frequency-time analysis (line 6), which allows the
traveltime measurements calculation between itself and
its neighbors (line 7). With the traveltime measurements,
the node is able to construct a partial view of the
subsurface by calculating and interpolating the slowness
(1/velocity) vector respecting to its neighbors (line 9).

3.4.8 Collaborative Imaging

Lines from 10 to 23 of algorithm 1 describe the
collaborative process of the subsurface imaging. We
borrow the idea of data aggregation process in ambient
noise from Valero et al. (2018). A tree structure if
forming between all nodes inside the network with
a pre-defined root. The root can be selected by the
user in the configuration file of the system. The

tree structure enables aggregation of the partial maps
(slowness vectors) in a bottom-top fashion. Depending
on the node role in the tree, the algorithm shows the node
procedure. If the node is a leaf (line 11), it just sends its
partial map to its parent. If the node is an intermediate
node (line 14), it aggregates the partial maps of its
children with itself, and then sends the aggregated map
to its parent. If the node is the root (line 19), it waits for
all its children partial maps, performs the aggregation
with itself, and then output the final map. The system
manages a MAX_TIME to define the maximum time of
waiting for a node child response, after which the waiting
is discarded assuming the child node is down.

3.4.4 Output description

The final map, calculated in line 23, is the collaborative
velocity map which represents the subsurface image. The
system then plots the image for experts interpretations.

4 System Setup

In this section, we describe the main hardware and
software components of ANION to resolve subsurface
imaging. We implemented and deployed ANION system
on real devices and perform experimental tests on real
field scenarios.

4.1 Hardware

Every node or sensor in the network has a global
positioning system (GPS), three channel/component
seismometer (geophone), a Raspberry Pi 3 board, a
battery and a solar panel as shown in Fig. 5. Some
hardware components are housed into a waterproof
box called R1+ for protecting them from the harsh
environment. The low-power GPS interface provides
the geo-location of the sensor node and a time-stamp
is used for the system to collect, synchronize and
process the seismic data. The three channels geophone
is incorporated into the system to detect the velocity of
ground movements. Each channel records its own data
with respect to its axis N, E, and Z or directions North,
East and Depth (vertical). The single board computer
(Raspberry Pi) is the core of the system because is in
charge of collecting and storing data, processing data
analytics, communicating with other units and providing
raw and processed information to a visualization tool.
We also integrate a waterproof battery 11V and 99.9 Wh.
The battery is connected to a 10 Watt solar panel for
giving to the system renewable energy.

The detailed specifications of the main single-board
computer inside R1+ are presented in Table 1

4.2 Software

Our system relies on five main software modules shown in
Fig. 6, and we define them as follows: (i) the acquisition



Smart Seismic Network for Shallow Subsurface Imaging and Infrastructure Security 7

! \ Solar Panel § s

Figure 5 (a) Node hardware details. (b) Deployment.

Table 1 Single-board computer specifications

Raspberry Pi 3 Model B

CPU 1.2GHz 64-bit quad-core ARMv8

Memory 1 GB SDRAM

USB 2.0 ports 4 (via the on-board 5-port USB
hub)

32 Gb Micro SDHC
10/100 Mbit/s Ethernet, 802.11n
wireless, Bluetooth 4.1

On-board storage
On-board network

module is responsible for gathering the raw data from
the medium. We use C++ language for developing
the functions for reading geophone measurements and
processing data. We also have a MySQL database
inside each node to store the data for future use if
needed. The acquisition module also helps with the
synchronization of each node; (ii) the signal processing
module performs the pre-treatment of the signal, the
cross-correlation between signals, and the frequency-
time analysis to obtain phase traveltime measurements.
This module was developed using C++4; (iii) the
communication module was developed mainly in C+-+
and is responsible to communicate and cooperate with
neighbor nodes. We use USER DATAGRAM PROTOCOL
(UDP) to broadcast the information and TRANSMISSION
CoNTRrROL PrOTOCOL (TCP) to send data to neighbors
in order to aggregate the final map; (iv) the map
generation module is responsible for generating the final
velocity map. C++ was used for developing this module;
(v) finally, for the visualization module, we developed a
Web front-end in PHP and JAVASCRIPT to enable users
to monitor in real-time what is happening inside each
node and the final map.

Medium acquisition Map Generation

Visualization
PHP, Javascript

C++ C++ \
T

Signal Processing Communication
C++ ”| C++, UDP, TCP

[

Figure 6 Programming languages used on software
modules.

5 Experiments and Evaluation

For evaluation purposes, we deployed our system using
13 sensor nodes and performed a field test. Our
test was made on April 10th, 2018. The deployment
location was an open space in University XXXcampus
between geography and chemistry buildings. We chose
this location because this area is known for having
underground pipelines. Our goal was to measure the
correct functionality of the system and to investigate
whether we could generate a velocity map that illustrates
the differences in velocity between the ground and the
pipelines. Fig. 7 shows the location of the sensors in this
experiment.

N S

Figure 7 Deployment and sensor location in the field test.

The system ran for five hours, and it was configured
to (i) perform cross-correlation between neighbor nodes
every five minutes and stack the results, (ii) run
collaborative imaging for generating the velocity map
every five (5) hours and (iii) utilize an appropriate
frequency range for detecting small object, in this case,
the pipe. All these parameters are setup before the
deployment in a configuration file.

First, we examined the ambient noise data recorded
by each node. Fig. 8 shows an example of the data
gathering by the geophone in sensor number 1. Notice
that even though we are using the vertical component of
the geophone (Z direction), we can also monitor the other
two components (East direction and North direction).

Once we ensure the acquisition module functionality,
we checked the signal processing module. This was done
by looking into the cross-correlation and Green functions
(equation 1) of the signal between each pair of nodes.
Each node cross-correlate its signal with its neighbor
signal every ¢ time and stacks them together. As said,
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Figure 8 Raw data monitoring example from sensor node
1 in our deployment.

this procedure enhances the SNR. In this case, we
configure ¢t to be 5 minutes. Then, the system correlates
every 5 minutes of data and stack it for a long period
of 5 hours. Fig. 9 shows an example of symmetry cross-
correlation we obtain between sensors 3 and 6.

T
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Figure 9 Symmetric cross-correlation result from nodes 3
and 6 in our deployment.

Every T' =5 hours, every node performs the FTAN
procedure. In this procedure, each cross-correlation
measure is analyzed to determine the phase traveltime
(also known as delay time). When the traveltime is
calculated, we are able to generate the slowness vector
5. Each node generates a “node partial map”. Examples
of node partial maps are shown in Fig. 10. Green and
black diamonds represent the location of the sensors in
the field; the green diamond is the node that is plotting
the partial map. Axis x and y represent the size of the
interpolated grid in the ambient noise seismic process
described in algorithm 1, line 8.

These maps have significant errors because they are
just a partial view of the subsurface. For example, in
Fig. 10(a), node 1 is located at the upper-right part,
and it seems to do not have a complete vision of the
subsurface, which is predictable since the node is located
in a corner. The same happens with node 6 and node
8 (Fig. 10(b) and (c)). Fig. 10(d) shows the partial
map of node 16 that is located near to the central
node. However, there are still irregularities in the partial
map. These irregularities are due to in partial map

Node 1 perspective Node 6 perspective

10 20 30 40

(a) (b)

kmi/s Node 16 perspective
i

Figure 10 Partial maps from (a) Node 1, (b) Node 6, (c)
Node 8, and (d) Node 16.

the correct frequency range is still not set up, and the
different spectral components may interfere with each
other. The system performs a collaborative aggregation
process to generate the final map and mitigate errors
through validations and frequency selection.

The final velocity maps after collaborative
aggregation for our field experiment is shown in Fig.
11(a) and Fig. 11(b). The central frequency used was
125 Hz. By using a high frequency, we ensure to evaluate
the shallow surface(Artman, 2006) since the wavelength
of the seismic wave decreases with increasing frequency.
We can observe from Fig. 11(a) that when we set up a
velocity range between 500 m/s and 800 m/s the map
looks diffuse but we can still perceive a difference in the
center of the map.

To obtain a clearer image of the shallow subsurface,
we modify the display range to 740 m/s and 756 m/s
to further increase the contrast in the velocity map. We
can observe that the surrounding velocities are all below
740 m/s, but the central structure is stable along with
a horizontal line and between 752 m/s and 756 m/s.
The area with high velocity in the map indicates that
it should be an isolated structure/facility, corresponding
to the wanted pipeline we are aiming to detect under
our deployment. This result shows we are able to see
structures under the subsurface and detecting some
security issues (for example, a broken pipeline).

5.1 Results Discussion

For instrument limitations, we chose 125 Hz as the
dominant frequency in our experiments. The sampling
rate of our sensors is 500 Hz. Based on the Nyquist-
Shannon sampling theorem, only the first 250 Hz are
usable. Furthermore, to avoid aliasing effect(?), we
adopted up to 125 Hz frequencies. From Figs. 11(a)
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Figure 11 (a) Velocity map with a velocity range of 500
m/s and 800 m/s. (b) Final velocity map with
velocity range between 740 m/s and 756 m/s.

and 11(b), in our application, the shallow subsurface
velocity is around 750 m/s. Considering a central
frequency of 125 Hz, the wavelength A (A = ¢/w, where ¢
is velocity and w is frequency) will be about 6 m/s. Then,
the seismic resolution is calculated by A/4, resulting in
our resolution being about 1.5 m, which is not optimal
for a pipeline detection, whose diameter is about 20 cm.
This is the reason why the pipeline image looks thick
in Fig. 11(b). In addition, according to depth sensitivity
kernel theory (Chen and Lee, 2015), the maximum depth
for a frequency of 125 Hz is approximately 5-7 m,
which differs at different locations with various geological
conditions. Thus, the velocity map we generate is an
average map between depth 0 and 5 m. Since the pipe
we want to detect is located 1 meter under the ground,
it should be detected in the imaging result. However, if
the pipeline is not the only underground facility in this
depth range, our result may be degraded. The solution to
improve the resolution and image shallower subsurface is
to increase the sampling frequency, which is the reason
why ground-penetrating radar (GPR) can do its job.

To sum up, the application results show that our
ANION system can detect thick pipelines with a
relatively acceptable resolution when the underground
network is not complicated. And, it may present better
results for underground tunnel detection, as the tunnel
usually has a larger diameter and within our depth

sensitivity range. We envision to extend this system
to other potential applications explained in section 2.
We also expect to continue improving our algorithms
to obtain higher resolution images. Potentially, we can
include more algorithms for detecting pipe leakages
and other security problems. In addition, we plan to
incorporate shear-wave inversion algorithms to obtain a
3D velocity map for further interpretations in detail.

5.2 Bandwidth and Communication Cost
FEvaluation

We  conducted an evaluation in terms of
bandwidth/throughput utilization and communication
cost to highlight the benefits of our distributed approach
with a centralized approach in which all nodes send the
raw data to a central place (central coordinator). Manual
data collection is not considered for fair comparison.

First, we calculate the throughput of the network
and the available bandwidth of both approaches. The
local available bandwidth of a sensor node is measured
locally at the MAC (media-access-control) level: the
percentage of time channel is sensed idle and the node
is not back-off state, multiplied by the channel capacity.
In a mesh network, every “hop” (link) between sensors
will decrease the bandwidth by half (Jain and Dovrolis,
2003). This happens because wireless links can only do
one thing at a time - transmit or receive. Our instruments
are based on a Raspberry Pi 3 as computer board. The
wireless communication bandwidth of Raspberry Pi 3 is
estimated at ~10Mbps (Megabytes per second) (Upton,
2016). Due to the number of links in our topology (some
nodes may have 5 or 6 links, which reduced the available
bandwidth), we based our observations on a maximum
available bandwidth of ~2Mbps.

Fig. 12 shows the throughput and available
bandwidth for (a) distributed ANION presented in this
paper, and (b) a centralized approach. This throughput
was recorded for 120 seconds in which nodes in the
distributed approach exchange information with the
neighbors every t = 20s to perform cross-correlation
later. From Fig. 12(b), it is possible to note that
the average available bandwidth is very low since all
nodes send information to a central place. In contrast,
ANION improves the bandwidth utilization due to in-
situ processing and minimal communication every 20
seconds. Our approach meets the bandwidth limitations,
and the sent packages are small due to data preparation
and compression.

Second, we conducted a study of the communication
cost of ANION compared to a centralized approach. To
analyze the communication cost, we measured the cost in
terms of the number of received packages on each sensor
in the network. We calculated the received package after
1 hour of cross-correlation in the network.

Fig. 13 shows a 5 x 5 grid of sensor nodes and
the color-bar denotes the number of messages received
by each node. We can see that the communication is
balanced in ANION and each node receives roughly
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Figure 12 Throughput and available bandwidth analysis.
(a) Distributed ANION. (b) Centralized approach
where all nodes send continuously data to a
central coordinator.

o

around 100 messages. Whereas in the centralized
approach since we use center node as a collector of
information, we observe an imbalance communication
pattern. There is an increased message overhead
near the center node roughly accumulating to 400
messages. Building the infrastructure with a special
coordinator, routing protocols and synchronization adds
extra overhead and is not suitable for decentralized
systems such as mesh sensor network. This also has
an impact in the energy consumption of each node.
According to Pottie and Kaiser (2000), the energy of
transmitting 1KB a distance of 100m is approximately
the same that executing 3 million of instruction by
processor. Hence, local data processing is crucial for also
saving sensors energy. This implies that our approach
besides reducing communication cost, it also helps to
avoid extra energy utilization.

5.8 Link reliability and node disruption analysis

The system behavior under link reliability and node
disruption is analyzed in this section. With the data
collected for the nodes in the real deployment, we run
an experiment on CORE network emulator (Ahrenholz
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Figure 13 Communication cost in terms of number of
messages received by each node. (a) Distributed
ANION. (b) Centralized approach where all nodes
send continuously data to a central coordinator.

et al., 2011). Every node emulates the real device
we deployed on the field by reading from an internal
database we previously filled with the information we
collected in the field. For testing link reliability, we
configured the node links in the emulator to loss 20%
and 50% of the packages 20% of the time. Because we
are stacking the cross-correlations that are calculated on
each node for a long period T, even if some packages
are lost, the final result will no be significantly affected.
However, if the stacking time T is too short, the final
velocity maps could present important inconsistent.
In the collaborative imaging step, nodes aggregate
information. If some nodes fail or packages are lost
too frequently, the final result can be highly impacted.
However, we designed a resilient mechanism that helps
to diminish the impact of package loss in aggregation.
The system has been designed to restart
automatically the operations after failure. In this
scheme, after a sensor is automatically started with
a system service, and it has been synchronized with
the other sensors via its GPS, the sensor checks if
there a wvelocity calculation and imaging has been
done during the time it was down. This is done by
checking is the current time is greater than the time
the process supposes to be performed. If this happens,



Smart Seismic Network for Shallow Subsurface Imaging and Infrastructure Security 11

the node sends a request to others for recalculation of
the velocities and interpolation. The cross-correlation
process also starts in any case. With this scheme,
we introduce resilience to the system, and we aim to
guarantee that the results will be computed with the
maximum numbers of available sensors.

wlanl7

ANION - No Loss

ANION - 10% lost by 20% of the time

e ——

ANION - 50% lost by 20% of the time

(b)

Figure 14 Link reliability analysis (a) CORE emulator
scenario with data from real deployment. (b)
Pipeline detection result from: (top) ANION with
no loss; (middle) ANION with 10% of package loss
by 20% of the time; (bottom) ANION with 50% of
package loss by 20% of the time.

Fig. 14(a) shows CORE emulator with the same node
topology we used in field. Fig. 14(b) illustrates the final
pipeline detection through velocity map for the three
scenarios of package loss. Note that, when the package
loss is severe, the final velocity map is impacted even

with our recovery scheme. However, the detection of the
infrastructure is still possible.

In ANION method, although we are able to distribute
the computation part, the communication still relies
on a root node to complete the aggregation of the
velocity map. We are currently investigating methods to
perform aggregation using gossip methods (Boyd et al.,
2006) that also involves information exchange only with
neighbors. Since the variables (slowness/velocity) need
to be aggregated and averaged, we intend to use gossip
methods that converge to average consensus (Boyd et al.,
2006). In this way, we can achieve a decentralized way
to compute aggregation that besides to meet bandwidth
constraints and reduce communication cost, it will be
capable to be resilient to link and node disruptions.

6 Conclusion

In this paper, we presented a seismic sensor system for
imaging subsurface infrastructures that can be used in
wide variety of applications. Our approach is based on
ambient noise seismic imaging, a geophysics technique
that uses the cross-correlation of the ambient noise
measurements of the earth to calculate the velocity under
the surface. This technique is non-invasive, economical
and no need of active energy sources. We leverage the
capabilities of current sensor networks to provide a
system that can perform in-situ signal processing and
inter-nodes communication and cooperation to generate
real-time velocity maps for security analysis. Our field
tests demonstrate the system is able to calculate velocity
maps that illustrate the differences in speed between
underground structures. We envision that ambient noise
techniques in real time can be treated as a new source
that is economical, practical, and particularly valuable
for seismic hazard mitigation, and anomalous activity
detection in urban and non-urban areas. Our bandwidth
and communication cost analysis indicate that ANION
is suitable for distributed environments since it reduces
communication while meets bandwidth constraints.
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