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Current sensor technologies enable the passive and continuous monitoring of human behaviors as well 
as infrastructures to ensure personal safety and assess individual health state. One passive technology 
that has the potential of gathering personal data is the vibration sensor. In this paper, we carry out 
an extensive survey of the current vibration-based sensing technologies for human and infrastructure 
safety as well as health monitoring. These technologies utilize structural and bodies vibration as a source 
of data, and they can be incorporated in wearable or non-wearable devices. Furthermore, the vibration 
sensing technology utilizes low-cost and low-power sensors, which make it attractive for indoor and 
outdoor monitoring. We have classified the technologies into five categories: vibration-based sensing 
for assessing human health, recognizing personal behavior, inferring occupancy information, evaluating 
personal safety, and monitoring infrastructure health. In each category, we also classify the approaches 
that utilize single and multiple sensors. Moreover, we discuss the different types of signal processing and 
machine learning techniques that are applied to each approach.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

The use of sensor networks in areas such as healthcare, human 
behavior, occupancy information, personal safety, and infrastruc-
ture health monitoring is growing at a fast pace. In the health area, 
the use of appropriate sensors provides multiple benefits: First, 
they allow monitoring of patients/subjects in real-time and contin-
uously. Wireless sensors can replace expensive and cumbersome 
wired telemetry systems [1]. Second, sensors allow the collection 
of long-term database and trend analysis of patients, which can 
be beneficial either to submit the data directly to physicians, or 
correlate bio-sensor readings with other patient information, for 
example, behavioral monitoring in smart homes [2].

In this area, recognition of movements and activities such as 
sitting, standing, lying, walking, and running can assist in the 
adoption of satisfactory health interventions and improved care. 
There are multiple approaches that aim to recognize human be-
havior using different types of sensors and devices, including 
smartphones [3–5], wearable accelerometers[6–8], motion sen-
sors[9–11], cameras [12–14], etc. In the occupancy information 
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inference, sensors can track person’s activities for detecting abnor-
mal behaviors that can represent a potential risk [15]. For example, 
different kinds of sensors are used to detect occupants inside the 
home using PIR sensors [16], which sense the motion of objects, 
magnetic door sensors [17] for occupancy state, and cameras mod-
ules [18] to capture images of occupants. In the addition to the 
above, sensors play a critical role in overseeing infrastructures (e.g. 
analysis of buildings) to provide efficient and timely detection of 
deterioration [19]. In building monitoring, fiber optic sensors [20], 
nanotube sensors [21], and accelerometer sensors [22] have been 
used to determine the health of civil infrastructures.

An emerging monitoring technology, vibration sensors, consid-
ered non-intrusive (no causing disruptions in normal activities), 
is arising in sensor research for health and safety applications. 
Many environments, machinery, motors, and people cause peri-
odic motions of structures to induce vibrations into other devices 
and structures located nearby [23]. The study of vibration mea-
surements would be beneficial to the understanding of patterns 
and signals from human/infrastructure activities. Vibration mea-
surements are complex because of its many components (displace-
ment, velocity, acceleration, and frequencies). In addition, each 
component in the corresponding signals can be measured in many 
different ways; for example, peak-to-peak, maximum/minimum 
peaks, average, root-square mean (RMS), etc. These signals can 
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Fig. 1. Example of vibration-based sensor applications on health assessment, activity characterization, infrastructure monitoring, personal safety, and behavior recogni-
tion. Note that the approaches that uses machine learning (ML) also may use signal processing (SP) techniques in the preprocessing and feature extraction stages. The 
total number of approaches that use pure SP is 68, the number of ML is 40 and from those almost 90% uses SP as well.
also be measured in the time domain (real-time, instantaneous 
measurements with an oscilloscope or data acquisition system) 
or frequency domain (vibration magnitude at different frequencies 
across a frequency spectrum), or just a single numerical value for 
“total vibration.”

In this paper, we carry out an extensive survey of the cur-
rent vibration-based sensing technologies for human, infrastruc-
ture safety and health monitoring that use vibration measurements 
only. We have classified the vibration-based technologies into five 
categories: assessing human health, recognizing personal behav-
ior, inferring occupancy information, evaluating personal safety, 
and monitoring infrastructure health. In each category, we also 
classified the approaches that utilize single and multiple sensors 
and inter-node communication, as well as the different types of 
signal processing and machine learning techniques that are ap-
plied to each approach. Furthermore, within each category, we 
present different types of applications (e.g. occupancy estimation, 
person identification, heart rate estimation, building monitoring, 
etc.) Fig. 1 shows examples of vibration-based applications in each 
studied category. On top of each category name, there is a bar 
graph that indicates the proportion of applications that use pure 
signal processing (SP) techniques or machine learning (ML) ap-
proaches. Note that the approaches that use ML also may use 
SP techniques in the preprocessing and feature extraction stages. 
In this paper, we consider “pure signal processing techniques” to 
those approaches that apply time and/or frequency domain analy-
sis to the signals without the use of ML or deep learning methods. 
On the other side, we consider and categorize approaches like ma-
chine learning approaches, those that apply ML even if they have 
applied SP for the preprocessing or the feature extraction process. 
In this figure, the trend of data analysis technique per category 
is clear. The use of SP approaches is more frequent in health 
monitoring, activity characterization, and infrastructure monitor-
ing, whereas the ML approaches are more frequent in personal 
2

safety and behavior recognition applications. Also, note that some 
of these applications may lie in multiple categories as they can be 
used for multiple purposes.

The rest of the paper is organized as follows: Section 2 in-
troduces the research works for monitoring and assessing human 
health that has an impact on the healthcare system. In Section 3, 
we present the vibration-based approaches to recognize and clas-
sify behavior. The approaches to inferring occupancy information 
are presented in Section 4. Section 5 introduces the applications 
for personal safety such as person identification and occupancy es-
timation. Section 6 presents vibration-based approaches for build-
ing and infrastructure monitoring. We elaborate on the future of 
vibration-based the technologies in Section 7, and we present the 
conclusion of our research in Section 8. See Fig. 2.

2. Human health assessment and monitoring

Vibration and mechanical-vibratory signals are known to con-
tain essential information for clinical diagnosis and healthcare ap-
plications [24–27]. As explained in [28], the mechanical waves that 
propagate through the body due to natural physiological activity 
reveal characteristic signatures of individual events, such as body 
orientation (about 0-0.1 Hz), respiration (about 0.1-0.5 Hz), pulse 
(about 0.4-2 Hz), gait, and locomotion (about 0-5 Hz) [24,29]. 
Medical applications can take advantage of these measurements, 
especially in the area of remote health monitoring [24,29,30]. Cur-
rently, the investigation on vibration signals for health monitoring 
is mainly focused on the cardiac effects. However, by combin-
ing different respiratory modulations on morphology and the fre-
quency of the signals, the respiratory rate (RR) can be measured 
and has a great potential for detecting respiratory diseases like 
apnea or shortness of breath [31]. The seismocardiogram (SCG) sig-
nals obtained by this type of sensors represent the local vibrations 
of the chest wall in response to the heartbeat [32]. The reflection 
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Fig. 2. Paper structure.

Fig. 3. Heart rate monitoring using a geophone attached to a bed. Raw Data from a geophone that show the different stages of cardiac cycle. Adapted from [35].
of the minor body movements caused by cardiorespiratory effects 
generates several independent peaks in the SCG. These peaks rep-
resent the cardiovascular activity in different phases of the cardiac 
cycle [33] and have been widely studied to extract the heart rate 
(HR) [34–36]. Besides, by changing the position and amplitude of 
these peaks, respiration influences the waveform and amplitude of 
the SCG [37,38], which led to RR detection [35,39]. Fig. 3 shows 
an example of data that can be collected by a vibration sensor lo-
cated under a mattress when a person lay down on the bed and 
the peaks that represent the cardiac cycle [35].

Some vibration sensors (e.g., geophones) can provide ballisto-
cardiograph (BCG) signals. BCG refers to the measurement of the 
repetitive human body displacement caused by the heartbeat and 
blood ejection [40]. BCG provides valuable information about car-
diovascular function, such as the myocardial contractility [41]. The 
main advantage of BCG is that it can provide a non-intrusive moni-
tor of the heart as no sensors need to be attached to the body. The 
HR and RR have been measured using BCG with different sensors 
like force sensors [42,43], air or water pressure sensors [44–46], 
accelerometer sensors [47], and geophone [48].

Besides HR and RR, other studies have made efforts to es-
timate more complex vital measurements including blood pres-
sure [49,50] and knee health monitoring [51] using vibration. Fur-
thermore, the analysis of sleep patterns – movements, bed occu-
pancy, and positions on the bed can also be studied using vibration 
signals [35,52]. In this section, we present the data analysis tech-
niques that have been used for health monitoring with vibration 
sensors. We present the works that have used one or multiple sen-
sors to estimate the vital sign measurements. Differentiating the 
number of sensors in these applications can provide a platform 
for new ideas of using a sensor network to share information of 
partial results in the estimation process and enable optimization 
processes in these solutions.

In this section, we explore the different signal processing and 
machine learning techniques that have been used to estimate vital 
signs and health monitoring with vibration sensors (Section 2.1). 
We also present the different types of sensors and/or sensor net-
works used in each approach (Section 2.2).
3

2.1. Data analysis techniques

Some of the most important applications in health assessment 
and monitoring are related to estimating heart rate, respiration 
rate, and evaluating person’s sleep patterns. The type of data anal-
ysis technique varies from application to application. Here, we 
survey the most common methods used for assessing HR and RR 
(Section 2.1.1), sleep monitoring (Section 2.1.2), and gait analysis 
(Section 2.1.3).

2.1.1. HR and RR estimation
Initially, the estimation of HR and RR was utilizing specialized 

hardware devices. In one prior study [53], Mack et al. designed a 
vibration sensor consisted of an ultra-sensitive piezoelectric trans-
ducer that was able to capture low-frequencies responses to pro-
vide HR and breathing information. Different signal processing 
techniques were applied to enhance the raw data and separate the 
HR and breathing information including low-pass anti-aliasing fil-
ter [54], instrumentation amplifier, bandpass filters [55], and non-
inverting amplifiers. The sensor was placed under the chest. The 
counting of the HR was performed manually from the filtered sig-
nal and compared to a commercial oximeter with an error of ±5%. 
Later, in 2011, Dinh et al. [56] presented the design and testing 
of a heart rate sensor using a low-cost accelerometer. The sensor 
included a small-sized triple-axis accelerometer (MMA7260QT), a 
circuit, and an amplifier to process SCG signals. The accelerometer 
was mounted on a printed circuit board and taped on the chest of 
the participants. The signal processing techniques were made on 
hardware and included the two-stage filtering of the signal with 
a low pass filter with a cut-off frequency of 40 Hz. Then, a hard-
ware timer was used to measuring the digital pulse by capturing 
the negative edges of the z-axis acceleration signal and represents 
the heartbeat.

Since 2016, the approaches for estimating HR and RR with vi-
bration sensors have been oriented to apply software signal pro-
cessing and machine learning techniques with off-the-shelf seis-
mometers and geophones. In 2016, Jia et al. [48] were the first to 
propose a bed-mounted geophone-based heartbeat monitoring. In 
this study, authors use an SM-24 Geophone Element [57], an am-
plifier [58], and an Analog-to-Digital Converter (ADC) placed under 
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the mattress to extract the heartbeat of the person on the bed. The 
signal was processed in the following way. First, the authors com-
puted an FFT on the geophone signal to find out whether there is 
a clear separation between heartbeats and body movements in the 
frequency domain. After experimentation, the FFT information sug-
gested the application of a low-pass filter with a cut-off frequency 
between 6 and 10 Hz to effectively separate heartbeats and body 
movements. Then, a Sample Auto-correlation Function (ACF) [59]
was applied to extract periodicity from the time series. The peak 
finding algorithm developed by Thomas C. O’Haver [60] was then 
applied to locate peaks in the sample ACF results. Those peaks 
were considered the heartbeats. However, the authors applied an 
optimization technique lo take only the first 20% of the peaks from 
the sample ACF to calculate the average heartbeat interval. The av-
erage error of the approach was 1.30% when the subjects did not 
move on the bed, and 3.87% when the subjects moved.

In 2018, Li et al. [39] proposed a methodology to extract HR 
and RR using a seismometer. For HR, the authors proposed a Lo-
cal Maxima Statistics (LMS) method, and for RR, they proposed 
an Instantaneous Property from the Oscillatory Analysis. The main 
difference with [48] is that the strict periodicity property of the 
heartbeat is not required. In the LMS, when the peaks are gener-
ated by the heartbeat, the point is defined as the local maximum 
within an interval. To avoid interference produced by the filtering 
and ACF, the authors then applied an empirical truncate statis-
tics analysis method to eliminated false peaks. In the oscillatory 
analysis for estimating RR, the oscillatory analysis technique syn-
chrosqueezed wavelet packet transform (SSWPT) [62] is applied to 
extract instantaneous properties of the respiration. Then the SS-
WPT is used to obtain an instantaneous property estimation of the 
RR with the methods in [62–64]. Visual comparisons between re-
sults and peaks seem to match, but no further error measurements 
were provided.

Later, in 2020, Clemente et al. [35] present a comprehensive 
sleep monitoring system called “Helena” that includes the esti-
mation of HR and RR while the person is in bed. A geophone of 
100 Hz was used in conjunction with an embedded system that 
enables the real-time estimation of the vital signs. This is the 
first work that incorporates an end-to-end real-time system us-
ing vibration signals for HR and RR. The authors first prepared the 
signal from the geophone by applying notch filters [65] to sup-
press the noise components with iso-dominant-frequencies; then, 
a bandpass filter was applied with 0.1 Hz low-cut frequency and 
8 Hz high-cut frequency to extract target vibration signals. To ex-
tract the HR, instead of using an LMS method as proposed in [39], 
the authors proposed an envelope-based HR estimation method. In 
this method, the envelope of the filtered signal is estimated and 
the peak detection is done over the envelope curve, which avoids 
the application of the ACF. To estimate RR, the authors proposed 
a double-envelope methodology in which the detected peaks of 
the HR (first-envelope) are used as the respiratory modulation sig-
nal by extrapolating them. Then a new envelope of the signal is 
obtained and count the peaks to estimate the respiratory rate. 
The results were compared with a cleared-FDA device, the Apple 
Watch Series 4 in a comprehensive study with multiple people in 
multiple environments, types of mattresses, and types of floors. 
The errors were about ±2.41 beats-per-minute (bpm) and ±0.89
respiration-per-minute (rpm) for HR and RR respectively. Later the 
same year, Li et al. [52] presented a variation of the “Helena” 
methodology by estimating HR and RR using an Ensemble Em-
pirical Mode Decomposition (EEMD) method [66]. In this method, 
the signal is pre-processed using a bandpass filter with the same 
frequency than [35]. Then the EEMD method is applied to elimi-
nate frequency mixing issues in the signal and obtain the Intrinsic 
Mode Functions (IMF). Through a simple spectrum analysis, dom-
inant frequencies of IMFs are measured and selected inside the 
4

HR and RR frequency range and then classified in groups. To ex-
tract the intrinsic cardiac and respiratory information from IMFs, 
the authors applied a Principal Component Analysis (PCA) to the 
HR and RR selected groups. The first Principal Component of each 
group represents the HR and RR information.

In addition to measuring HR and RR using vibration sensors on 
the bed, other approaches have measured these vital signs in ve-
hicles. For example, Bonde et al. [61] present a continuous heart 
rate variability (HRV) monitoring in cars based on the estimation 
of the RR-interval and using a piezoelectric accelerometer. The sen-
sor was attached near the passenger’s heart. Due to severe signal 
interference with vehicle motion, the first stage of target signal 
extraction was proposed. In this stage, the authors filtered the sig-
nal to eliminate high peaks that may correspond to other actions 
and not the heart movement. A Denoising method was applied to 
remove engine noise. A continuous wavelet transform [67] was ap-
plied to isolate the periodic nature of the heartbeat. To detect the 
heartbeat, the authors used a peak detection algorithm and a lo-
cal maxima method. Then, using a sliding window, the distance 
between the first two peaks is calculated as the RR-interval. The 
experiments in [61] showed an error of 54ms for RR-interval es-
timation. Fig. 4 shows four different methodologies utilized in the 
works that are based on the vital signs estimations on signal pro-
cessing methods.

Recently, multiple efforts have been made to apply machine 
learning and deep learning techniques to vibration signals to es-
timate vital signs. In 2020, Park et al. [36] presented a geophone-
based sensing system for extracting electrocardiogram (ECG) pat-
terns using heartbeat vibration through a bed mattress. The signal 
is first filtered by passing the signal through a bandpass filter 
to keep frequencies between 5–30 Hz. Then, the data passed on 
to a Bidirectional Long-Short Term Memory (Bi-LSTM) [68] deep 
learning model for ECG waveform estimation. The deep learning 
model architecture in [36] is designed using two-stacked Bi-LSTMs 
and three fully connected layers. Fig. 5 (adapted from [36]) illus-
trates the ECG estimation model using Bi-LSTM. The model maps 
the non-linear relationship between various signal inputs with the 
corresponding ECG signal. Multiple practical scenarios were pre-
sented by the authors to evaluate the model. Comparison between 
the model output and the ground-truth ECG signals were made to 
identify peaks from both using the QRS detection algorithm pro-
posed in [69]. Errors between the model and the ground-truth 
were less than 1.2%.

Other works have focused on estimating breathing states. 
Choudhary et al. [71] presented a method to assess human respi-
ratory system by identifying degree-of-breathings, such as breath-
lessness, normal breathing, and long breathing. The input data are 
SCG signals. The authors extracted 15 statistically significant mor-
phological features from the SCG cycle including heart-rate, beat 
energy, beat entropy, kurtosis [72], autocorrelation feature [73], 
IM/IC amplitude [72], maximum spectral amplitude, and beat spec-
tral centroid. Then, a Stacked Autoencoder (SAE) deep learning ar-
chitecture was employed for identification of different respiratory-
effort levels. The method had an overall accuracy of 91.45% in 
recognizing the breathing stages.

Table 1 shows different vibration-based approaches for heart 
rate estimation. The vast majority of the approaches (nine papers) 
utilized pure SP techniques, whereas only one paper involved the 
use of ML. Table 2 indicates the methods exclusively for respira-
tion extraction. In this case, four papers relied on the use of SP, 
and two used ML techniques.

2.1.2. Sleep monitoring
Sleep activity is one of the crucial factors for determining 

the quality of human health. Typically, sleep is studied in clini-
cal environments using dedicated medical devices [74–76]. How-
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Fig. 4. Signal processing methodologies for HR, RR and RR-interval estimation using vibration sensors. (1) Methodology based on ACF presented in [48]; (2) methodology 
based on envelope and peaks detection presented in [35]; (3) methodology based on EEDM and IMF presented in [52]; (4) methodology based on peak emphasis and 
detection presented in [61].

Fig. 5. ECG estimation model using Bi-LSTM presented in [36].
ever, recent technological developments in sensing and data anal-
ysis have led to new approaches for sleep monitoring assess-
ment. The new approaches include the monitoring of sleep us-
ing wearable and non-wearable devices. Vibration sensors have 
been used in both types of devices. For example, multiple devices 
have been used in home-setting scenarios to assess sleep posi-
tion detection [77–80,77], sleep stage classification [81–83], heart 
and respiration analysis [84,77], and body temperature [84,85]. 
The type of devices used for sleep assessment are wide, including 
smartphones [86–89], microphones [90,91], pressure mats [92–98], 
pressure bed-sheets [99], eye masks [100], WiFi devices [80], 
video [101], and bands [102]. In this section, we present the ap-
5

proaches that involve vibration sensor devices and the type of 
characteristics they measure in order to monitor sleep.

Zhu et al. [103] proposed an automatic system for the long-
term monitoring of the quality of sleep. The system uses a piezo-
electric transducer placed under a mattress to measure the heart 
rate, respiration, and the parameters of the body movement at the 
time of sleep. A sleep efficiency index measurement was estimated 
using the in-bed detection. The collected data is transmitted to 
database servers through the Internet. Similarly, Nam et al. [104]
proposed a system for quantifying sleep quality. The system was 
equipped with a three-axis accelerometer and a pressure sensor. 
The accelerometer was used to measure the sleep pose and ac-
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Table 1
Vibration-based approaches for heart rate estimation.

Paper Sensor and sampling Data analysis technique Error Year

[53]•1 Piezoelectric transducer • Normalization, Band-pass filters ±5% 2003
Air-filled bladder • Manually count after data collection

[56]•1 Triple-axis accelerometer / 40 Hz • Low-pass filters and Digital Pulse Not reported 2011

[48]•1 Geophone and amplifier / 10 kHz • Sample Autocorrelation Function (ACF) 1.30% 2016
• Peak Detection

[34,70]•2 Geophone / 2.5 kHz • Short-term Fourier Transform, Spatial signatures 1.9 bpm 2017
• Energy clustering and Binary Masking

[39]•1 Seismometer / 1 kHz • Local Maxima Statistics Method Not reported 2018

[61]•1 Piezoelectric accelerometer / 2 kHz • Denoising, Peak emphasis 54 ms 2018
• Wavelet filter and scale selection

[35]•1 Geophone / 100 Hz • Enveloped-based HR method ±2.41 bpm 2020
• Peak Detection

[52]•1 Seismometer / 100 Hz • Ensemble Empirical Mode Decomposition (EEMD) ±2.55 bpm 2020
• Intrinsic Mode Functions (IMF)

[36]�1 SM-24 Geophone / 10 kHz • Bi-directional Long Short-Term Memory (Bi-LSTM) < 1.2% 2020
Deep Learning Model

(•) Signal processing data analysis. / (�) Machine learning data analysis.
(1) Only one sensor is used. / (2) More than one sensor is used.

Table 2
Vibration-based approaches for respiratory rate estimation.

Paper Sensor and sampling Data analysis technique Error Year

[37]•1 Accelerometer / 1 kHz • Bandpass filter, Segmentation, Peak Detection ∼ 1.1 breaths-pm 2012
• Interval computation, Interpolation and re-sampling

[34]•2 Geophone / 2.5 kHz • Spatial Information Extraction ∼ 0.38 breaths-pm 2017
• Amplitude Demodulation

[35]•1 Geophone / 100 Hz • Double-enveloped-based method ±0.89 breaths-pm 2020
• Peak Detection

[52]•1 Seismometer / 100 Hz • Ensemble Empirical Mode Decomposition (EEMD) 0.3±1.03 breaths-pm 2020
• Intrinsic Mode Functions (IMF) / Spectrum Analysis

[71]�1 SCG Acquisition Circuitary • Orthogonal Subspace Projection, Feature Extraction ∼ 5.83% 2020
• Stacked Autoencoder-based DNN Model

[28]�2 Flexible Low-Frequency • Hardware Design Not reported 2020
Vibration Sensor (FLFV) • No Processing Technique reported

(•) Signal processing data analysis. / (�) Machine learning data analysis.
(1) Only one sensor is used. / (2) More than one sensor is used.
tivity, while the pressure sensor was used to estimate HR and 
RR. Looking into the accelerometer measurements, this work was 
based on thresholding methods. The data collected from the sys-
tem was transmitted over a wireless network of sensors based on 
ZigBee technology to a portable recording device and to a PC.

In 2019, Hu et al. [105] proposed an approach to identify sleep 
stages through bed-frame vibrations. The system aimed to distin-
guish sleep stages between the Rapid Eye Movement (REM) [106]
and Non-Rapid Eye Movement (NREM) [107]. Once an event is 
detected by using a thresholding method, the authors extracted 
multiple features like average power (AP), the significant peaks 
with the highest amplitude of the signal, a cumulative variance 
for a total of 17 features. Then, the authors utilized a scalable 
machine learning system for tree boosting named XGBoost [108]. 
XGBoots is a regularized extension of traditional boosting ensem-
ble techniques that belongs to the classification and regression 
(CART) family [109]. The evaluation was made in the National Chil-
dren’s Hospital. The cross-validation and prediction test achieved 
an area under curve (AUC) score of 0.84 in recognizing subjects’ 
sleep stages, which is not high but acceptable.

In 2020, Clemente et al. [35] proposed a multi-method mecha-
nism for sleep monitoring. The approach includes multiple param-
6

eters (besides HR and RR) to evaluate the sleep. For example, the 
authors used a Multiple Feature Fusion (MFF) method that com-
bines the Spectral Entropy (SE), the Kurtosis, and the Teager Energy 
Operator (TEO) of the signal to determine if the person is on the 
bed or not (On/Off Bed). This work was the first in introducing 
detection of falls from bed detection. Authors extracted multiple 
features from the signal including signal amplitude, event duration, 
amount of sub-events, last 20 peaks information, and power spec-
tral density. Those features feed a Support Vector Machine (SVM) 
reaching an accuracy of about 97%. In the same work, a thresh-
olding methodology was followed to differentiate movements and 
changes in the posture of the person on the bed. In the same year, 
Li et al. [52] also proposed a sleep monitoring approach with a 
seismometer based on whether the person is on the bed, their 
movements and posture change. The On/Off Bed estimation was 
made using an Auto-Correlation Function (ACF) after applying ap-
propriate pre-processing filters. In this same work, sleep posture 
identification was made using an SVM. The used features included 
the seven stages of the heart motion cycle recorded by SCG sig-
nals [110]. The posture classification accuracy was 92.4%. Table 3
presents a summary of the currently available works on sleep 
monitoring using vibration sensors; note that for this specific ap-
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Table 3
Vibration-based approaches for sleep monitoring.

Paper Sensor and sampling Data analysis technique Error Year

[103]•1 Piezoelectric transducer (PZT) • Momentum method (movements detection) Not reported 2014
• Wavelet transform and a soft threshold noise removal method
• Adaptive Threshold Method (HR)
• Zerocross Point Detection Method (RR)
• Sleep efficiency (stable timeOnBed/timeOnfBed)

[104]•2 Three-axis accelerometer / 60 Hz • Bi-directional Recursive Filter 0.076 mean difference 2016
Pressure sensor • Threshold method (movements and posture detection) against ground truth

[105]�1 Geophone / 1000 Hz • Feature Extraction 2019
ADC module • XGBoost [108] machine learning (Sleep Stages) ∼ 0.16%

[35]�1 Geophone / 100 Hz • Enveloped-based method & peak detection (HR) ±2.41 bpm 2020
• Double-enveloped-based method & peak detection (RR) ±0.89 breaths-pm
• Multiple Feature Fusion Method (On/Off Bed) On 0.5% Off 0.27%
• Support Vector Machine (Fall from bed) Fall 3%
• Thresholding (Movements and posture) Mov 2.08% Pos 7.92%

[52]�1 Seismometer / 100 Hz • EEMD and IMF (HR & RR) ∼ 2.55 bpm (HR) ∼ 0.3 bpm (RR) 2020
• ACF method (On/Off Bed) 0.2%
• Support Vector Machine (Posture) 7.6%

(•) Signal processing data analysis. / (�) Machine learning data analysis.
(1) Only one sensor is used. / (2) More than one sensor is used.
plication, ML is the lead approach (three papers utilized it versus 
two SP papers.)

2.1.3. Gait health analysis
In healthcare, the gait pattern of individuals is important to 

monitor neuromuscular disorders that cause progressive loss of 
muscle such as Muscular Dystrophy (MD) [111]. There are multiple 
existing sensor technologies for continuous gait monitoring, such 
as pressure-based [112], wearable-based [113], and vision-based 
sensing systems [114]. However, those approaches have limita-
tions; for example, pressure sensors require dense sensor deploy-
ment, vision sensors require lines of sight, and wearable sensors 
require the patient to wear a device for long periods, which makes 
these approach inadequate for long-term monitoring. Vibration-
based systems are a potential alternative for gait analysis that 
enables the study of the structural vibration to infer the way peo-
ple walks for medical purposes. The rationality is based on when 
humans are people is walking each footstep serves as an excita-
tion to the floor to generate a vibration response. By analyzing this 
response, it is possible to infer the gait and potentially disease-
related gait impairments. In this section, we analyze the studies 
that aim to perform gait analysis for medical purposes based on 
vibration sensors.

In 2019, Farget et. al [115] introduced a health gait monitor-
ing system through footstep-Induced floor vibrations. The authors 
decomposed vibration responses to obtain signal peaks that corre-
spond to temporal gait information and leveraged foot dominance 
to learn a signal amplitude-footstep ground reaction force transfer 
function. The system has two main modules 1) the footstep de-
tection module that extracts data from an SM-24 geophone sensor 
and isolates the footsteps by analyzing the impulsive footstep sig-
nal and their variance respecting the ambient vibration; 2) a tem-
poral gait parameter estimation module that applies a Continuous 
Wavelet Transform (CWT) to the isolated footsteps to decompose 
the signal energy and identify the peaks that correspond to foot 
interaction with the floor, and 3) a footstep force and gait balance 
estimation module where the authors train a function mapping 
the footsteps responses to the ground reaction forces by normaliz-
ing the footstep signal. Preliminary results show that temporal gait 
parameters can be estimated with up to 99% accuracy and gait bal-
ance symmetry can be estimated with as low as 10.4% error.

In 2020, Dong et. al [116] presented a vibration-based system 
that can monitor gait health using footstep-induced floor vibration 
7

in non-clinical settings. The authors leveraged a physical-informed 
approach to extract gait information and reduce structural influ-
ences. To separate the mixture of gait information, the authors 
proposed to convert vibration signals into temporal gait parame-
ters, stability scores, and toe-walking likelihood to quantify phys-
ical symptoms that characterize Muscular Dystrophy. An array of 
geophone was used to measure the vertical velocity of the floor 
and then it was processed to isolate footsteps traces using a low-
pass filter and a Wiener filter [117]. With the footstep extraction, 
the approach characterize the physical symptoms of MD including 
1) slow walking, 2) balance difficulty, and 3) toe-walking gait. Later 
the authors reduce the effects of the structural vibration by di-
viding the footsteps into two phases 1) the forced-vibration phase 
when the gait force is impacting the floor, and 2) the free-vibration 
phase when the structure is vibrating without excitation forces.

The second phase is then removed. The final step includes the 
prediction of footsteps from individuals with MD. In this stage, 
the authors utilized a Support Vector Machine with a Gaussian 
Radial Basis Function kernel to classify the steps in “healthy” or 
“Unhealthy” The approach was evaluated with real-world walking 
experiments at Nationwide Children’s Hospital with thirteen hu-
man subjects getting an average accuracy of 96%.

Table 4 presents the approaches for gait health monitoring us-
ing vibration sensors. Note that when the footsteps need to be 
classified as healthy or unhealthy, the approach is required to use 
an ML technique. More application for monitoring gait in terms of 
human behavior will be presented in Section 3.

2.2. Single sensors vs sensor networks

In terms of health assessment and monitoring, the vast majority 
of the works utilize one single vibration sensor for the monitoring 
process of a single person. As shown in Tables 1, 2, and 3, very 
few methods incorporate more than two vibration sensors. Some 
methods for monitoring include more than one [28], but the ob-
jective is to monitor multiple activities, not only health. One work 
that incorporates more than two vibration sensors to estimate RR 
is the one presented by Jia et al. [34]. The authors used geophones 
to sense bed vibrations caused by the ballistic force of two occu-
pants.

In such situations, the vibration from both persons are mixed, 
and a spatial difference between two signal sources (two geo-
phones) is computed for each vibration sensor to extract the two 
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Fig. 6. Experiment setting used in Jia et al. [34] with two sensors and the corresponding attenuation coefficients and time delays used to separate the two persons’ heartbeats.

Table 4
Vibration-based approaches for gait health monitoring.

Paper Sensor Data analysis technique Accuracy Year

[115]•1 SM24 Geophone • Amplification and Anomaly Detection Algorithm 99% 2019
• Continuous Wavelet Transform (CWT)
• Peak detection
• Function mapping

[116]�2 Array of Geophones • Lowpass filter and Wiener Filter 96% 2020
• Physical MD symptoms characterization
• Support Vector Machine with Gaussian Radial Basis Kernel

(•) Signal processing data analysis. / (�) Machine learning data analysis.
(1) Only one sensor is used. / (2) More than one sensor is used.
different heartbeat signals, and then the respiration extraction al-
gorithm deciphers the breathing rate embedded in amplitude fluc-
tuation of the heartbeat signal. The number of geophones used 
must be the same as the number of persons on the bed. The ap-
proach works as follows. First, the authors formulate the heartbeat 
separation problem by defining the mixed signals [118] and con-
sidering one geophone as a reference signal. Then, the relative at-
tenuation and delay coefficients were estimated. The authors apply 
a low-pass filter to filter out environmental noises, an Short-Term 
Fourier Transform (STFT) of the two geophone signals, a spatial sig-
nature method to estimate the symmetric attenuation and relative 
delay between the two STFT, an energy clustering method to esti-
mate each frequency bin, and binary masking to identify the peaks 
that refer to HR. Fig. 6 shows the experiment presented in [34]
with two subjects and two geophones (x1 and x2) and the corre-
sponding attenuation coefficient from each sensor.

One important detail in [34] is that even though the approach 
aims for continuous monitoring of HR and RR, the geophones are 
not forming a sensor network. In other words, the data is manually 
collected and mixed from the two sensors to deliver the results. 
This opens a line of research in how to utilize a sensor network 
of geophones or vibration sensor to estimate more accurately the 
HR, RR, sleep quality, and other vital signs like blood pressure and 
oxygen levels.

3. Behavior recognition

Some home monitoring research has tried to understand 
a broad range of human behaviors such as Activity of Daily 
Living (ADL) [119,120]. Multiple types of sensors have been 
used to recognize ADL and human behavior; for example, iner-
tial sensors (accelerometers [121,122], gyroscope [123], magne-
tometer [124]), physical health sensors (electrocardiogram [125], 
skin temperature [126], electroencephalograph [127], electromyo-
gram [128], force/pressor sensor [129]), environmental sensors 
(temperature [121], humidity [130], light sensor [131], barome-
ter [132]), and others like cameras [133], microphones [134], and 
GPS [135].
8

The monitoring of human behavior is essential in senior pop-
ulation, as the main goal is to observe and determine sudden 
changes in behavior patterns. Some of the main activities to rec-
ognize include gait changes, eating habits, washing habits, and 
bedrooms habits. These main activities may provide a guidance 
to detect anomalies in the behavior. On the another hand, sev-
eral studies have demonstrated that the behavior and physiological 
responses of farmed animals provide reliable information about 
animal health status and welfare [136]. The animal behavior can 
be measured using different types of sensors and data analysis 
techniques. Systems based on GPS are among the most popu-
lar ones [137–139]. However, other approaches using accelerom-
eters [140], video [141], and wireless sensors [142] have been 
proposed along with multiple data analysis techniques including k-
means classifiers [139], Kalman filter identification [143], and clas-
sification trees [144]. Here, we focus on the different approaches 
that have been proposed to monitor human and animal behavior 
in the context of vibration sensors.

In this section, we explore the different signal processing and 
machine learning techniques that have been used to estimate hu-
man behavior and ADL (Section 3.1). We also present the different 
types of sensors and/or sensor networks used on each approach 
(Section 3.2).

3.1. Data analysis techniques

Similar to health assessment and monitoring, the data analysis 
techniques for behavior recognition vary depending on the type of 
the application. Here, we explore relevant works on human behav-
ior (Section 3.1.1) and animal behavior (Section 3.1.2).

3.1.1. Human behavior
Cho et al. [145] presented an approach to model and monitor 

human behavior in a bedroom using wireless infrared and vibra-
tion sensors. In this approach, two vibration sensors were used, 
one inside the pillow and one by the bedside. The authors de-
fined behavior states and behaviors, such as “behavior for a person 
standing near a bed to go and sit down the bed,” “behavior for 
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a person sitting on a bed to lie down on the bed,” “behavior 
for a person lying on a bed to toss and turn,” and so on. For 
each stage, multiple features were extracted from the signal by 
empirically observing the behavior of the signal during the ex-
periments. A feature vector was created, and a state preserving 
approach was used for recognition with an accuracy of 75.4%. In 
2015, Tsukiyama [120] presents an empirical model to determine 
“normal” behavior in a house depending on water-flow vibration 
sensors that measure the water utilization in toilets and sinks. The 
author proposed that depending on the normal water utilization, 
one can measure if senior people are doing normal activities. The 
model includes the frequency of urination during nights based on 
the toilet flush, frequency of water usage in the kitchen, washroom, 
and bathroom when the resident is inside the house.

Fargert et al. [146] presented in 2017 a monitoring mechanism 
of hand-washing practices using structural vibration. In this study, 
the authors used a geophone and an operational amplifier attached 
to a sink structure. First, the hand-washing activity was isolated 
from the signal using an anomaly-based detection algorithm. Then, 
the system used the isolated signal to estimate multiple features 
like the energy distribution using a Power Spectral Density (PSD) 
function and the sum across frequency bands centered on the nat-
ural frequencies of the sink structure. Finally, the detected hand-
washing activity was classified using a support vector machine 
algorithm. The accuracy of the proposed detection reached 95.4%.

In 2018, Mirshekari et al. [147] presented a structure-adaptive 
approach for monitoring human gait using floor vibrations. The ap-
proach was composed for three modules. The first module, Impulse 
Detection, monitors the floor vibration signal from the geophone 
and isolates signals with larger variations as potential footsteps. 
The second module, Structure-Informed Model Transfer, labels the 
impulses, finds the low-dimensional latent space from a set of 
principal components, and predicts sample labels in the target 
structure with the model. This process allows the frequency rep-
resentation as a feature for estimating the footstep model. Finally, 
the Labeled Training model trains a new footstep classification for 
the target/new structure with the labeled data from module two. 
The three modules provide the analysis of the human gait. In the 
same year, Jabal et al. [148] presented a model for human behavior 
recognition using a wearable accelerometer. The approach includes 
a signal pre-processing and noise reduction stage utilizing a me-
dian filter [149]. Then, the feature representation and extraction 
was made using a Hierarchical Features Representation Methods. 
This method consists of extracting statistically dependent features 
such as magnitude of the signal, minimum and maximum signal 
features, standard deviation, and signal magnitude area. The clas-
sification among different behaviors was made using an optimal 
margin-based classifier with lesser complexity as linear support 
vector machine [150]. Results showed that the approach was able 
to identify different types of behaviors (walking, drinking, climbing 
stairs, etc) from available public databases.

In 2019, Pan et al. [151] evaluated the recognition of differ-
ent activities of daily living using two vibration sensors and one 
electrical sensor. The vibration sensors were two geophones, one 
located at the counter-top of a kitchen and the other on the 
floor. The main activities analyzed with the vibration sensors in-
cluding stove use, kettle use, open/close door, vacuum use, and 
walking. The authors first performed signal feature extraction and 
energy normalization. The vibration features included the signal 
segments of the same time duration over the two surfaces and 
frequency components concatenation. With those features, the au-
thors applied an SVM with an RBF kernel to ensure high-class 
separability. Results presented in Table 5 only show the error of 
the vibration sensor on the counter-top of the kitchen. In 2020 
by Xu et al. [152], the authors present TouchPass, which utilizes 
active vibration signals on smartphones to extract only physical 
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features of touching fingers to perform user identification. The ap-
proach involves the following steps. First, when the user touches 
the smartphone screen with the fingers, TouchPass collects, cali-
brates and segments the vibration signal obtained by an Interna-
tional Mathematical Union (IMU) sensor. Based on the segmenta-
tion, a Waveled-based feature extraction is performed to extract 
features in transient-state and steady-state of vibration propaga-
tion. A Cepstrum-based feature extraction is also applied to extract 
steady-state of vibration signals. Using these features, a behavior-
irrelevant on-touch user authentication model is proposed. In par-
ticular, the approach develops a Siamese network-based method 
to reconstruct the extracted features to behavior-irrelevant fea-
tures. Then, a distillation-based model is proposed to train a 
light-weighted behavior-irrelevant model for user authentication. 
Multiple evaluations were conducted. The reported accuracy was 
around 92% for legitimate users authentication, and around 94.5% 
for spoofer detection.

In 2020, Bonde et al. [153] presented an overlapping office ac-
tivity classification using IoT devices that measure structural vibra-
tion. In this study, multiple overlapping activities in an office were 
assessed using largely amplified geophone signals. The major ac-
tivities were classified into two categories. Category one includes 
activities such as sitting at a desk quiet, talking, or writing. Cate-
gory two includes active activities such as sit, stand, or walk. The 
authors also evaluate the overlapping between both categories. The 
feature extraction was made utilizing a Short Term Fourier Trans-
form (STFT) and summary statistics (maximum, mean, and vari-
ance). Then, an activity classification module was proposed. In this 
module, the authors used two stages of support vector machines. 
Finally, they combined the outputs of the two SVM. Results showed 
that the accuracy was 97% for category one, 90% for category two, 
and the overlapping of both categories as 90%. In the same year, 
Akiyama et al. [154] presented a methodology to estimate walk-
ing direction using vibration sensors. In this approach, two piezo 
elements were used, and they were assembled into a hardware 
system that also includes amplifiers and ADC/DAC converters. The 
approach for walking direction consisted of three steps. First, a 
pre-processing stage that includes taking the signal of the two vi-
bration sensors, applying Short-Term Fourier Transform (STFT), and 
obtaining the sum of the power spectrum of all the frequencies on 
the same time axis, and calculating the difference of the signals. 
Second, the authors applied a Linear Discriminant Analysis (LDA) 
to the difference data to extract and classify features used for ma-
chine learning. A data dimensionality reduction was also applied to 
reduce the number of dimensions of two by LDA. Finally, the au-
thors applied multiple machine learning techniques (KNN, Logistic 
regression, SVM liner, SVM RBF, Decision Tres, and Random Forest) 
to verify which one presented the best results. A 90% of the accu-
racy of walking direction was obtaining with KNN and SVM liner. 
In 2020, Moreu et al. [155] presented a framework for quantify-
ing dance quality and coordination utilizing floor accelerometers. 
In this study, the authors placed two sensors on the floor with 
multiple dancers around. They first estimated the Harmony index 
that captures the standard deviation in harmony by each dancer 
relative to the mean dance, assuming that is an expected harmony. 
This was accomplished by looking into the peaks of the signal. 
Then the authors estimated the Coordination index that captures 
the lack of symmetry of the vibration of one dance jump. This 
was accomplished by comparing the temporal separation between 
the highest peak acceleration and the centroid of all the acceler-
ation for each dance step. For comparison purposes, the authors 
also quantify a Visual index that indicates the dance quality based 
on an expert observation. The accuracy of the dance quality against 
visual observation was around 90%. Table 5 presents a summary of 
the available works on human behavior recognition using vibration 
sensors. The vast majority of the studied papers on human behav-
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Table 5
Vibration-based approaches for human behavior recognition.

Paper Sensor and sampling Data analysis technique Recognized behavior Error Year

[145]�2 Two piezo vibration sensors / 60 Hz • Feature Vector Activities on bedroom 24.6% 2012
One Passive Infrared sensor • Finite State Machine (FSM)

[120]•1 Water-flow vibration sensor / 10 kHz • Empirical model of normal water usage Toilet flush Not reported 2015
RFID tags Washroom sink usage

Kitchen sink usage

[146]�1 Geophone • Frequency-based feature extraction Washing hands 4.6% 2017
Operational amplifier • Support Vector Machine

[147]�1 Geophone • Feature extraction and Labeling Human Gait 3%-14% 2018
Amplifier • Support Vector Machine

[148]�1 Accelerometer • Pre-processing and noise reduction Climb stairs 5.89% 2018
• Hierarchical Features Representation Drink glass 11.77%
• Support Vector Machine Get up bed 14.71%

Pour water 0%
Sit down chair 18.19%
Stand up chair 17.65%
Walk 17.65%

[151]�2 SM-24 Geophone • Feature Extraction and Normalization Put on Stove 6.9% 2019
Electrical sensor • Classification with SVM Use Kettle 12.3%

• Equal-Weight Method for both types of sensors Open/Close Door 8.7%
Use Vacuum 2.0%
Walking 8.6%

[152]�1 Smartphone IMU Sensor • Wavelet-based & Cepstrum-based features User identification based-on ∼ 5% − 8% 2020
• Siamese Network-based Feature Reconstruction user finger movements
• Knowledge Distillation-based Classifier Training while touching screen

[153]�2 Geophones • STFT and summary statistics Office activity 2020
• Two Parallel Supervise Classifier (SVM) Cat 1: Quiet,talk,write 3%
• Combination of the classifiers Cat 2: Sit, Stand, Walk 10%

[154]�2 Vibration Piezo Element • STFT / Difference of signals Walking direction 10% 2020
• Linear Discriminant Analysis (LDA)
• Dimensionality reduction / KNN SVM

[155]•2 Accelerometer / 100 Hz • Peak Selection Dance Quality 11% 2020
• Harmony Index (standard deviation in harmony)
• Coordination Index (Lack of vibration’s symmetry)
• Visual Index (Observation)

(•) Signal processing data analysis. / (�) Machine learning data analysis.
(1) Only one sensor is used. / (2) More than one sensor is used.
ior rely on ML techniques (eight out of ten), which means that ML 
is the significant trend in this kind of application.

3.1.2. Animal behavior
Geophones and vibration sensors also have been used for un-

derstanding animal behavior. Accelerometers, for example, have 
played an important role in inferring animal activities from mul-
tiple species like horses [160], elephants [159], koalas [157] and 
dogs [161]. Accelerometers also have been use to collect behav-
ioral data of elks [162] and fur seals [163]. Accelerometers have 
been also used in chickens, ducks, and quail for determining the 
cease of body movements after euthanasia [164,165].

One work of classifying chicken’s behavior with accelerometers 
was presented by Banerjee et al. [156] in 2012. In this study, a 
light accelerometer was placed inside a casing and mounted on a 
hen’s back with a nylon harness as shown in Fig. 7(1). Data from 
different activities were collected. The six extracted behavior activ-
ities include sit/sleep, stand, walk/run, feed, drink, and dust-bathe. 
To classify these activities, the authors first extract some features 
from the signal. The features were the entropy and the mean. 
Then, the authors evaluate multiple classifiers, including Decision 
Trees and Naive Bayes Tress, but finally, decide to use Neural Net-
works as it exhibited the biggest accuracy. For training, 50% of the 
data was used, and the other 50% was used for testing. The neural 
network was composed of two layers. In the first layer, the clas-
sification was made using three states: static activities, dynamic 
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activities, and resource use. Then, the second layer was composed 
of the six aforementioned behavior activities.

In animal behavior, the majority of work has been done us-
ing accelerometers. However, a good attempt at analyzing animal 
behavior was made by Bonde et al. [158] in 2018. That was the 
first attempt to analyze farms using structural vibration from the 
pigs. The same group, later in 2020, presented an infrastructure 
for collecting data from multiple geophones deployed in a remote 
pig farm [153]. Even though the work presents only the data col-
lection infrastructure, the authors successfully integrated sensors 
and 4G to remotely obtain the data. Table 6 presents a summary 
of the available works on animal behavior recognition using vi-
bration sensors. Contrary to the human behavior approaches, SP 
techniques are most commonly used for animal behavior recogni-
tion (five out of six studied papers.)

3.2. Single sensors vs sensor networks

In terms of human behavior, the vibration approaches have 
demonstrated that can obtain multiple behavior recognition using 
only one sensor [120,146–148,152]. However, the use of multiple 
vibration sensors is useful to determine overlapping behaviors. The 
combination of the two or more sensor signals provides more ro-
bust information about human behaviors. That is the case of the 
work in [153], where multiple geophone signals were used to dis-
criminate among different behaviors inside an office. Regarding an-
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Fig. 7. Wearable and non-wearable vibration sensor for animal behavior recognition. (1) Chicken behavior [156]; (2) Koala estrus monitoring [157]; (3) Pig activity and 
location of geophones [158]; (4) Elephant walking distance measurement [159].

Table 6
Vibration-based approaches for animal behavior recognition.

Paper Sensor and sampling Data analysis technique Recognized behavior Animal Error Year

[161]•2 Accelerometer / 32 Hz • Down sampling / Minimum distance moved estimation Activity level Dog ∼ 7 − 29% 2007
ADC • Thresholding methodology / Correlation with video

[157]•1 GT1M Accelerometer • Empirical active and inactive status determination Monitoring estrus Koala Not reported 2009
150 Hz • Correlation coefficients with endocrine state

[159]•1 GT1M Accelerometer • Empirical footstep distance measure Walking distance Elephant ∼ 31 − 53% 2011
60 Hz • Correlation coefficients with GPS

[163]•2 Accelerometer • Visual time-series data analysis Mandible open behavior Fur Seal ∼< 5% 2011
8 Hz-32 Hz

[156]�1 MEMS accelerometer • Feature extraction: Entropy and Mean Sit/Sleep Chicken 12.90% 2012
• Neural Network Classifier Stand 29.19%

Walk/Run 0.02%
Feed 23.31%
Dust-bathe 0.08%
Drink 0.1%

[166]•2 Geoscope-178 & 179 • Data collection: Anomaly detection (time domain) Monitoring Pig N/A 2019
• Anomaly detection (frequency domain) (just data collection)

(•) Signal processing data analysis. / (�) Machine learning data analysis.
(1) Only one sensor is used. / (2) More than one sensor is used.
imal behavior, the majority of the works have been done using ac-
celerometers. Some studies have used more than one accelerome-
ter to recognized the animal behavior [161,163]. But those sensors 
do not involve the creation of a sensor network for sharing data. 
Until, 2019, when [166] presented their data collection approach 
for pig farms, a sensor network was proposed. This work intro-
duces the use of anomaly detection algorithms in the time and 
frequency domain to ensure the correct and continuous streams 
of sensor data. The system also introduces a method for system 
fault tolerance. This kind of approach can set a base for future 
work in which multiple sensors can independently interact with 
each other without the use of servers to recognize behavior in hu-
11
mans and animals. This is a promising and yet unexplored research 
branch.

4. Occupancy information inference

An increasing number of solutions use occupancy information 
for many scenarios such as asset tracking, estimate number of 
people in a place, logistics, security, etc. Since most human ac-
tivities at home or office are attached to rooms and to interactions 
with equipment, an occupancy information system must be first 
able to describe the position of the subjects relative to rooms 
and tools [167]. Occupancy estimation applications are mainly fo-
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cused on locating subjects or people inside determined areas. To 
achieve occupancy estimation and detection, many types of sen-
sors have been used. For example, passive infrared (PIR) sensors 
have detected the presence and absence of occupants in an of-
fice [168–171]; cameras also have been used to obtain the number 
of occupants in a room [172,173]; even CO2 and environmental 
sensors have obtained a rough estimation of occupancy [174–177]. 
Besides occupancy, person and multi-person indoor location is a 
hot topic that has been widely explored for activity characteriza-
tion. Many approaches utilize wearable sensors and are based on 
Local Positioning Systems (LPS) [178] or Pedestrian Dead Reckon-
ing (PDR) [179–183]. Other location solutions do not require the 
user to carry any devices. These approaches rely on tomographic 
solutions [184], pressure sensors [185], binary sensors [186], etc. 
Tracking is also another important information that helps to fol-
low the human activities inside a building or room. Although GPS 
can obtain the location outdoors with room-level accuracy, it per-
forms poorly indoors because the received signal power decreases 
with the lack of line of sight. Then, other types of sensors have 
been used. For example, pedestrian tracking have been obtained 
using WiFi signals [187], cameras [188], drones [189], and many 
more.

Regarding vibration sensors, some studies have been done for 
the aforementioned occupancy information inference. The use of 
multiple vibration sensors is typical in this type of application. 
However, the vibration sensors have been more used for outdoor 
underground object/earthquakes locations [190–193] to discussed 
in Section 6. Here, we are going to discuss the different approaches 
for occupancy information inference with vibration sensors focus-
ing on three main categories: occupancy itself, localization, and 
tracking of people.

In this section, we explore the different signal processing and 
machine learning techniques that have been used for occupancy 
information inference (Section 4.1). We also present the different 
types of sensors and/or sensor networks used on each approach 
(Section 4.2).

4.1. Data analysis techniques

Similar to behavior recognition, the data analysis techniques 
for occupancy information inference vary depending on the type 
of application. Here, we explore relevant works on occupancy es-
timation (Section 4.1.1), occupant localization (Section 4.1.2) and 
pedestrian and surface tracking (Section 4.1.3).

4.1.1. Occupancy estimation
The current vibration-based approaches for occupancy estima-

tion use different data analysis techniques based on statistic signal 
analysis [194–196], matched filtering [197], neural networks [198], 
and support vector machines [199]. Here, we present the most 
recent ones that cover the spectrum of different data analysis tech-
niques. One of the first approaches that estimates occupancy using 
vibration sensors was presented by Pan et al. [200] in 2014. This 
work uses a data collection board based on an arm-based flash 
MCU and SM-21 Geophone with sensitivity of 28.8 V/m/s. This 
was a low-cost analog sensor. The system first detects footsteps 
using an anomaly detection technique that identifies signal energy 
changes from the ambient noise model. It then localizes footsteps 
based on signal energy variations and known sensor locations. 
Finally, structural features and a sequence of localized footstep 
events are used to track and count occupants. The system is shown 
to achieve 99.55% event detection accuracy, located the footsteps 
within three feet, and obtained an occupancy count accuracy of 
85% in two different buildings.

An occupant traffic monitoring system was proposed later in 
2016 by the same group [201]. In this study, the authors aim to 
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address the issue of distinguishing multiple simultaneous walkers. 
Its vibration sensing unit consisted of a geophone, amplifiers and 
filters, and analog-to-digital converters (ADCs). The acquired sig-
nals are analyzed, and extracted features are passed to K-Nearest 
Neighbor (KNN) algorithm to obtain the occupant traffic informa-
tion. With collected occupant footstep-induced structural vibra-
tions, selected features are evaluated by comparing them through 
different categories. Tests on both impact loading and human walk-
ing in a commercial building are conducted. The evaluation results 
showed that the occupant number detection for one to four people 
walking in the same direction achieves less than 0.2 people mean 
estimation error for each case.

Another occupant detection method through step-induced
structural vibration was developed by Lam et al. [199] by in-
corporating structural characteristics. In the proposed platform, a 
geophone (SM-24) is used with a DAQ assistant to collect vibration 
signals. The design has an offline component which characterizes 
the structure and an online component which performs footstep 
detection incorporating the structure characteristics. The proposed 
algorithm first identifies dominant frequencies and then set the 
threshold using wavelet analysis on the signals. The dominant 
frequencies and the thresholds are passed to occupant footstep 
detection based on one-class SVM (OSVM). The platform was vali-
dated in both a Carnegie Mellon University building and Vincentian 
Nursing Home. The average of precision rate reached 0.87 and 
the average recall rate was 0.93. The results showed up to 50% 
improvement over the traditional threshold method, which also 
translates to up to 4X reduction in detection error.

In 2017, Reuland et al. [202] presented an occupant detection 
method using multiple Roctest Actimon-X1 sensors underneath the 
slab that measure accelerations with a maximum sampling rate 
of 2000 Hz. The signal processing method used is Error-Domain 
Model Falsification that was proposed by Goulet et al. [208] and 
extended in this study for human localization using acceleration 
data. The approach was able to identify occupants and estimate the 
area in which that specific occupant was located. Zhan et al. [203]
presented an occupant activity level estimation using geophones. 
In this study, a sparse sensor configuration was deployed on the 
floor to monitor activity levels by estimating occupancy. The vi-
bration signal from the floor is amplified, digitized, and processed 
to ensure noise filtering and occupant vibration recognition. In 
order to estimate the activity level, a collaborative threshold selec-
tion, and event detection was proposed. The threshold value was 
adapted according to the “normal” signal level between 12 am and 
5 am, assuming that no occupancy is detected at that time. The 
proposed approach obtained a high correlation with access con-
trol records that were considered ground truth in both workdays 
and weekends. In 2019, Drira et al. [204] presented an occupant 
detection strategy based on a classification method to distinguish 
footsteps from other events. A SM-24 geophone with a sampling 
rate of 1 kHz was used. The measured signal is firstly decom-
posed using a continuous wavelet transform (CWT) and then, the 
event detection is based on computing the standard deviation of a 
moving window over several frequency components of the mea-
surements. The authors later used a binary SVM to classify the 
events that corresponds to footsteps.

In 2019, Pan et al. [205] presented an area occupancy counting 
using sparse structural vibration sensing. In this study, multiple 
geophone sensors were deployed to the floor and event detec-
tion was used to estimate occupancy. The work addressed var-
ious challenges including the reduction in amplitude when the 
person walks in a room and the signal is obstructed by walls 
and the complexity of signal mixture when multiple people walk 
simultaneously in the sensing range. The authors proposed esti-
mation of the traffic count by characterizing the signal mixture 
for different traffic conditions and utilizing the traffic counts and 
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Table 7
Vibration-based approaches for occupancy estimation.

Paper Sensor/sampling Data analysis technique Type Error Year

[200]•2 Geophone / 2 kHz • Feature extraction / Sum Features/ Noise Modeling update Event Detection 0.45% 2014
• Tracking based on Velocity Change Event (VE) Occupancy counting 15%

[201]�2 Geophone / 1 kHz • Feature extraction based on cross-correlation and entropy Occupant Number Mean 0.2 2016
• K-Nearest Neighbor (KNN) Classifier

[199]�2 Geophone • Continuous Wavelet Transform Occupancy 1 person 16.67% 2016
• One-Class SVM Occupancy 2 people 33.33%

Occupancy 3 people 66.67%
Occupancy 4 people 8.33%

[202]•2 Roctest Actimon-X1 • Gaussian white noise process / Bandpass & Butterworth filters Occupant detection ∼ 5 meters 2017
(Accelerometer/ 2 kHz) • Error-domain Model Falsification Possible Location

[203]•2 Geophone • Collaborative threshold selection Occupancy activity level ∼ 13 − 23% 2018
• Threshold-based event detection / Activity count

[204]•2 Geophone / 1 kHz • CWT and signal segmentation / Time difference Occupant detection Mean 7.5% 2019
• Binary-SVM classifier

[205]•2 Geophone • Event detection through anomaly detection Occupant detection 0.45% 2019
• Event segmentation through peak analysis Traffic estimation mean 0.2
• Event Identification through window energy array Occupant activity mean 0.2
• Counting using signal features

[206]�2 Geophone • Feature Extraction (spectrum ratios) Occupant Presence 2.3% 2020
• Support Vector Machine

[207]�2 Geophone / 25 kHz • Feature-based transductive transfer learning Occupant Detection < 2% 2020
• Structure-based data projection

(•) Signal processing data analysis. / (�) Machine learning data analysis.
(1) Only one sensor is used. / (2) More than one sensor is used.
heuristic about structural properties and human walking to tract 
the occupancy. In the traffic counting, multiple features were ex-
tracted from the processed signal; for example, the normalized 
cross-correlation between spatial-different signals, the normalized 
cross-correlation between temporal difference signals, the signal 
duration, and the signal entropy. High accuracy was achieved with 
the method with less than 0.2 people mean for traffic estimation 
and occupant tracking. Later, in 2020, Mirshekari et al. [207] pre-
sented a step-level occupant detection across different structures 
using footstep-induced floor vibration. In this study, the authors 
presented an innovative transfer learning methodology to identify 
occupants. They used a Feature-based Transductive Transfer Learn-
ing approach. This kind of approach aims to find a feature space in 
which the distributions of data in source and target share similari-
ties. The authors addressed multiple challenges; for example, they 
tested the approach in multiple different structures; the structural 
effects on the vibration responses were characterized to develop a 
physics-driven model transfer approach that projects the data into 
a new feature space with less structural effect. The occupant detec-
tion was evaluated in various structures with different structural 
materials and characteristics. This approach, is one of the most 
innovative works, as is the first one to introduce the concept of 
transfer learning for occupant estimation using structural vibration.

Table 7 presents a summary of the most recent works on oc-
cupancy estimation using vibration sensors. Note that in this kind 
of application, half of the approaches rely exclusively on SP tech-
niques and half of them on ML.

4.1.2. Occupant localization
As stated in [209], although source localization is a well-

developed topic, the methods based on vibration are primarily 
focused on seismology and damage detection. In in-door envi-
ronments, locating pedestrians is beneficial for multiple applica-
tions, and some of them are already shown in this paper. How-
ever, vibration-based localization in buildings and homes is a chal-
lenging task due to vibration signal effects like dispersion, reflec-
tions, heterogeneity, and material discontinuity. Multiple applica-
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tions have been developed using footstep vibration and time dif-
ference of arrival (TDoA) to locate indoor pedestrians as shown 
in the works of Mirshekari et al. [210,211] (Fig. 8(1) and 8(3) re-
spectively). However, TDoA presumed wave propagation in ideal 
scenarios and environments. In the real world, the interaction be-
tween the building’s structure and the footstep vibration is more 
complex due to wave distortions. New methodologies have been 
proposed by researchers such as Choudhary et al. [212] (Fig. 8(2)). 
In this section, we present the recent research in indoor localiza-
tion using structural vibration in both, traditional TDoA approaches 
and new models.

One of the first studies in indoor localization using vibration 
sensors was presented by Bahroun et al. [213]. The authors intro-
duced the concept of perceived propagation velocity which decreases 
when the source-sensor distance increases. The findings of the 
model led the authors to propose a new localization algorithm that 
is adapted to dispersive mediums, using only the sign of the mea-
sured TDoA (SO-TDoA). The SO-TDoA algorithm consists of region 
localization instead of an accurate location. Another approach pre-
sented by Schloemann et al. [214] utilized the difference between 
Time of Arrival (TOA) and TDoA of sixteen sensors placed under 
the building floor; however, in this study, the event was produced 
by impacting the floor with a hammer.

The same philosophy of using TDoA was presented on large 
scale by Poston et al. [215]. In this study, the authors placed 240 
PCB accelerometers on the structural ceiling at a Virginia Tech 
building. The approach first attempted to detect the footstep of 
a person and then localize the detected footstep when possible. 
To detect footsteps, the authors analyzed the signal to identify 
the peaks corresponding to a footstep. To localize the footstep, 
the TDoA between sensors was used. Then, in 2016, the same 
group presented an improvement of the TDoA methodology for 
localization [216]. In this study, the authors proposed to use a pre-
processing of the signal that consists of a matched filter detector 
to maximize the signal-to-noise ratio (SNR) and an Additive White 
Gaussian Noise (AWGN) method. The conventional TDoA process-
ing of matched filter outputs provided sub-meter accuracy. How-



M. Valero, F. Li, L. Zhao et al. Digital Signal Processing 114 (2021) 103037

Fig. 8. Pedestrian localization methods based on induced foot-step vibration. (1) Occupant localization approach proposed in [210]; (2) Framework for seismic sensor-based 
event detection and localization proposed in [212]; (3) Footstep localization method proposed in [211].
ever, this method became unreliable when conducting localization 
over the full span of a building floor. For that reason, Poston [217]
proposed an approach to identify important types of footstep-to-
sensor interactions and a more sophisticated TDoA technique. In 
this case, the author utilized a bank of matched filters to identify 
two different forms of footsteps. To improve the TOA, the author 
adapted a seismology phase picking technique to footsteps based 
on the Akaike Information Criterion (AIC) [218]. Then, the TDoA is 
estimated by also considering the set of propagation speeds over 
the physically plausible range.

In the same year 2016, Mirshekari et al. [211] introduce the use 
of the concept of multilateration in footsteps localization. The ap-
proach consisted of three steps; first, the footstep is detected using 
a thresholding method base impulse-like-excitation [199]; then, a 
TDoA estimation using time-frequency representations of the sig-
nal to extract the high energy peaks used as peak-based TDoA; 
finally, the footstep localization is estimated using multilateration 
because the foot strike is unknown and it can be leveraged the 
TDoAs of the signal to localize the source [219].

Mirshekari et al. [210] later proposed an occupant localization 
methodology using footstep vibrations based on TDoA, but, in this 
case, the authors considered the vibration wave propagation in the 
floor and the floor heterogeneity. In this approach, the footstep 
detection is accomplished by conducting a chi-squared hypothe-
sis test. Then, the authors proposed a Dispersion-invariant TDoA 
estimation that uses signal decomposition and then estimates the 
TDoAs for different components. To estimate the TDoAs between 
different pairs of sensors for every scale components, the authors 
14
used a threshold-based method. Finally, the footstep localization is 
achieved using a Locally Adaptive method that selects a subset of 
sensors that are closer to the footstep to further reduce signal dis-
tortion effects and estimate component-level footstep localization 
using an adaptive multilateration approach. The whole approach is 
described in Fig. 8(1).

One of the first approaches to introduce machine learning tech-
niques for footstep detection and later localization was Clemente 
et al. [220]. The authors first extracted different features from the 
vibration signal produced by footsteps and other events; those in-
cluded time (event duration, standard deviation, entropy, peaks, 
etc) and frequency domain (spectra, centroid, peaks) features. Then 
a support vector machine was utilized to classify the events be-
tween footsteps, fall downs, etc. Once the event is classified as a 
footstep, the authors used a real-time TDoA in which the sensors 
collaborate with each other to estimate the TDoA. In order to im-
prove the TDoA, the authors utilize the floor velocities (obtained 
after calibration) to eliminate the TDoA assumption of constant 
speed. The authors also used a Maximum Likelihood estimator to 
calculate the position of the vector that maximizes the likelihood 
function. This was the first work to introduce collaboration be-
tween sensors for estimating localization. The approach reached 
an error of 0.47 m. Later, the same group presented a work lo-
cate footsteps [221] based on the same philosophy of floor veloc-
ity calibration, but instead of using traditional TDoA, the authors 
proposed a method called Angle-constrained Time Difference of 
Arrivals (ATDOA), which is an optimization method to estimate 
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Table 8
Vibration-based approaches for localization estimation.

Paper Sensor/sampling Data analysis technique Error-in-distance Year

[213]•2 Accelerometers • Perceived propagation velocity of footsteps on floor < 1.5 m 2014
• SO-TODA algorithm

[214]•2 PCB Shear Accelerometers • Difference between Time-of Arrival (TOA) and 1.14 m 2015
Time-Difference-of-Arrival (TDoA)

[215]•2 PCB Accelerometers • Footstep detection: Peak Detection 0.22-1.5 m 2015
15 kHz • Footstep localization: Time-Difference-of-Arrival (TDoA)

[216]•2 PCB Accelerometers • Pre-processing: Matched filter detector & AWGN 0.1-0.2 m 2016
• Reliable TOA measures to form candidate region locations
• Indicator function to refine candidate locations

[217]•2 PCB Accelerometers • Matched filter bank 0.6-0.8 m 2016
• AIC adaptation from phase picking

[211]•2 Geophones • Footstep detection: Thresholding method 0.41 m 2016
• Peak-based TDoA and Multilateration

[210]•2 Geophones • Threshold-based method for footstep detection mitigation 0.18-0.34 m 2018
• Dispersion-invariant TDoA Estimation
• Locally Adaptive Footstep Localization

[220]�2 Geophones • Footstep detection: Support Vector Machine 0.47 m 2020
1 kHz • Real-time TDoA and Maximum Likelihood

[221]•2 Geophone • Footstep detection: STA/LTA method 0.27 m 2020
1 kHz • Angle-constrained Time Difference of Arrivals (ATDOA)

[212]�2 SM-24 Geophones • Footstep detection: Decision Tree Classifier 1.37 m 2020
10 Hz • Localization: NLRM or SPM

(•) Signal processing data analysis. / (�) Machine learning data analysis.
(1) Only one sensor is used. / (2) More than one sensor is used.
two-dimensional location vector. In this case, every single node de-
termines the footstep event arrival time and direction angle.

In 2020, Choudhary et al. [212] moved the location spectrum 
to outdoors using vibration signals. The idea of the approach was 
to use multiple seismic sensors and fuse the information to detect 
and localize a target in an outdoor environment. The whole ap-
proach is presented in Fig. 8(2). After data de-noising, the authors 
proposed an event detection module using a decision tree classi-
fier to solve the binary problem of presence or absence of a target 
in area A. Then, the authors proposed a localization estimation 
module that uses either a Non-linear Regression Method (NLRM) 
or a Seismic Property based Method (SPM). Results are promising 
considering that the experiments were performed in outside envi-
ronment.

Table 8 presents a summary of the recent studies on occupant 
and footstep localization using vibration sensors. The vast majority 
of the studied papers utilize purely SP techniques for occupant lo-
calization (eight out of ten papers) as they use methods that rely 
on triangulation of the signals.

4.1.3. Pedestrian and surface tracking
Besides localization, tracking is another important characteriza-

tion that enables multiple indoor and outdoor applications. Track-
ing objects can be pedestrian tracking, car tracking, surface track-
ing for enabling movement tracking, etc. The value of this tracking 
is tremendous. For example, tracking pedestrians in the monitor-
ing scene can bring business value, and tracking of movements on 
a surface can lead to pattern recognition and smart home applica-
tions. The tracking of pedestrians and objects is not new and has 
been accomplished using a wide variety of sensor such as cam-
eras [222,223], mobile phones [224,225], WiFi devices [226–228], 
inertial sensors [179,229,230], wearable sensors [231,179], and 
more. In terms of data analysis techniques, tracking has been done 
using signal processing [232,233] and machine learning meth-
ods [234–238]. In this section, we study the multiple techniques 
that have been used for object tracking based on vibration sensors.
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In 2016, Pan et al. [239] proposed a multiple pedestrian track-
ing using vibration sensors. The sensing module samples at 20 
kHz with all sensors wirelessly synchronized to the order of mi-
croseconds. Each sensor consists of a geophone to detect structural 
vibration. The footstep-induced signals are first extracted from the 
vibration signals based on a Gaussian noise model from the noise 
signal to detect Step Events. The initial region of step signals is 
identified from the signal segments that contain overlapping step 
signals, which are used to localize each step leveraging Time Dif-
ference of Arrival (TDoA) based localization. The experiments are 
conducted in an office setting and the proposed system achieved 
less than 0.4 m of error in both one and two persons stepping 
conditions. Later, in 2017, the same group presents an on-surface 
human interaction (tap & swipe) tracking system with vibration 
sensing [240]. In the design, oscilloscopes are adopted to detect 
vibrations caused by surface particles moving perpendicular to the 
target surface. After vibration sensing, interaction identification is 
performed to identify each tap or swipe. The interaction detection 
is conducted through anomaly detection. The system identifies an 
event to be a swipe if the segments above the threshold last over 
one second. If a swipe is detected after the initial tap, the sys-
tem conducts tap localization. In tap localization, wavelet-based 
decomposition is used for band selection and filtering for taps. 
To localize and track the interaction based on event signals, the 
proposed system calculates the TDoA of event signals detected at 
different sensors. Localization is then performed by using multi-
lateration with the pairwise TDoA values from different sensors. In 
the final swipe tracking module, it outputs the estimated trajectory 
of a given swipe signal. The evaluation uses metrics such as tap 
and swipe errors on different materials and varying surface/sens-
ing area sizes. Experimental results show that the proposed system 
achieves up to 6X decrease in localization error for taps and 3X re-
duction in length estimation error for swipes compared to other 
benchmarks without considering wave properties.

In 2017, Poston et al. [241] introduced a framework for occu-
pancy tracking using footstep vibrations. The approach was based 
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Table 9
Vibration-based approaches for pedestrian/object tracking.

Paper Sensor/sampling Data analysis technique Tracking type Error Year

[239]•2 Geophone • Event Detection: Gaussian noise model Multiple 0.34-0.39 m 2016
20 kHz • Tracking: TDoA, multilateration and particle filters pedestrians

[240]•2 Oscilloscope • Tap localization: TDoA & multilateration Tap/Surface < 0.4 m 2017
25 kHz • Tracking: Linear fit on the detected locations

• Tracking: Distance traveled from farthest points

[241]•2 352B Accelerometers • Detection: Chi-Square Function / Threshold Pedestrians 0.05-0.2 m 2017
32 kHz • Tracking: ThrellisForward and TrellisTraceback algorithms

[242]•2 Accelerometers • Tracking: Track Tree Structure Multiple 0.23-0.36 m 2018
• Tracking: Track tree pruning pedestrians

[243]•2 SM-24 Geophones • Localization: TDoA & multilateration Footstep 0.07-0.13 m 2018
25 kHz • Tracking: Signal decomposition / Wavelet filter Surface tap 0.03-0.18 m

[244]•2 SM-24 Geophones • Tracking: Error-Domain Model Falsification Trajectory < 5% 2019
3 kHz • Tracking: Sequential analysis

[245]•2 Triboelectric vibration • Localization: TDoA and hyperbolic intersections Tap < 10% 2019
sensor / 3 kHz

(•) Signal processing data analysis. / (�) Machine learning data analysis.
(1) Only one sensor is used. / (2) More than one sensor is used.
on estimating the location of the footsteps and distinguishing them 
from different pedestrians. The authors then introduced three 
tractable algorithms that operate online, updating occupancy count 
over time as new footsteps are detected. The first algorithm, called 
FindTrellisStart, implements a search procedure for both the first 
track generation and the subsequent tracks. The second algorithm, 
called TrellisForward, implements stage-wise trellis computations to 
find footsteps in a viable time window. The last algorithm, called 
TrellisTraceBack, is executed once the forward phase is complete 
and identifies the optimal path as the one with the lowest to-
tal cost. The author (Poston [242]) later presented an approach 
for tracking multiple building occupants. The constraints are the 
assumption that the occupants are moving on linear trajectories 
and that closely-spaced footsteps do not overlap in time. In this 
study, the author presented a tracking algorithm that receives a se-
quence of footstep event reports that includes detection time and 
observed position. The algorithm builds a tree structure where the 
first footstep is the root node. Several criteria were developed to 
identify which of the new footsteps might correspond to the first 
level branches. A track tree pruning methodology is also proposed. 
The results of this work show a tracking error under 0.36 meters.

For more general applications, Pan et al. [243] presented, in 
2018, a structural vibration sensing system that enables various 
types of human induced excitation (impulse and slip-pulse) track-
ing under multiple structural conditions. The proposed approach 
investigates the wave properties of different types of excitations to 
understand the dispersion, propagation and attenuation of impulse 
and slip-pulse signals, which are used to design the algorithm that 
can obtain accurate TDoA estimations. Similar to the work in [240], 
multilateration is adopted to calculate locations of the excitation 
sources and hence achieve tracking in [243]. A series of exper-
iments are conducted to evaluate the system by computing the 
accuracy of locating various types of excitation sources with differ-
ent structural characteristics. The results show that the proposed 
platform achieves up to a six times improvement in impulse lo-
calization accuracy and a three times improvement in slip-pulse 
trajectory length estimation compared to the benchmarks in mul-
tiple applications.

In most recent works, an alternative model for tracking pedes-
trians inside a building was proposed by Drira et al. [244] in 2019. 
The approach aimed to incorporate information from physical-
based models to overcome limitations of previous methodologies. 
Besides segmenting the footsteps using wavelet decomposition and 
identifying the footstep localization using a threshold that com-
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bines uncertainty and target reliability of identification, the work 
proposed an occupant localization error-domain model-falsification 
(EDMF) and sequential analysis to estimate the occupant trajectory. 
The EDMF involves the generation of multiple model instances that 
are falsified when the prediction instances contradict measurement 
data. In this case, a candidate location set is extracted from the 
real footstep location and the combined uncertainty. The sequen-
tial analysis is then done to identify the falsified locations resulting 
from the EDMF. The sequential analysis reduces the population of 
the resulting candidate locations. In terms of surface tracking, in 
2019, He et al. [245] presented a vibration based Human-Machine-
Interaction (HMI) with an unlimited sensing area on ubiquitous 
surfaces. The main idea is that by attaching triboelectric vibration 
sensors (TVS) on surfaces like doors, walls, and tables, the vibra-
tion sources can be located using the TDoA and the ordinary sur-
face can be converted into multi-functional interactive interfaces. 
A case of study of a authentication system based on TVS-based 
virtual numeric keyboard was presented. The signal generated by 
a finger tapping the plate with six keystrokes is captured by the 
sensors; a localization algorithm based on TDoA is used to locate 
the position of the vibration source. The combination of multiple 
locations could track the sequence of taps for authentications pur-
poses.

Table 9 presents a summary of the recent works on pedes-
trian and surface tracking estimation using vibration sensors. In 
this type of application, we have identified a potential research 
area. Note that all the current approaches rely exclusively on SP 
techniques. So far, we could not identify any approach that utilizes 
ML for pedestrian tracking.

4.2. Single sensors vs sensor networks

All the discussed approaches for occupancy information infer-
ence utilize multiple sensors to achieve occupancy estimation, lo-
calization, and tracking. The rationality is pretty simple; more than 
one sensor is needed to triangulate information to achieve local-
ization, which is indeed an indispensable feature for occupancy 
and tracking tasks. In fact, large scale deployment of sensors pro-
vides valuable data to improve the accuracy of localization and 
tracking [215]. However, taking advantage of the large scale sen-
sor networks to characterize occupancy, localization and tracking 
is still an open area in vibration sensors research. The vast major-
ity of these activity characterization approaches combine data from 
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Fig. 9. Examples of time and frequency vibration data from (1) Dog’s footstep; (2) vehicle; (3) Person’s footsteps. Images from [246].
multiple sensors in an off-line fashion; that means that the cur-
rent capacity of the sensors to communicate information and “talk 
to each other” remains unused. Efforts have been done; for exam-
ple, Pan et al. [205] proposed the use of geophone and Arduino to 
collectively gather data for occupancy counting using WiFi. In this 
study, the authors deal with transferring of data and clock syn-
chronization between sensors; however, even though each single 
sensor data is used to collaboratively determine the walking direc-
tion and the number of pedestrians, the approach is not done in 
real-time, which means that the post-processing of the signals is 
done off-line. We strongly believe that utilizing real-time in-situ 
computing could be an excellent direction in the future of indoor 
characterization with vibration sensors. Furthermore, finding inno-
vative ways to automatically deploy and configure multiple sensors 
without requiring manual intervention is another interesting path 
for indoor characterization that has begun to be explored by He et 
al. [247].

5. Personal safety evaluation

Human identification is one of the main challenges for health 
and personal safety applications. Specifically, in the personal safety 
spectrum, the applications to identify authorized users and intrud-
ers and applications to detect when a person’s fall have taken 
on new relevance these days. In this section, we explore personal 
safety in two directions, person identification and fall down detec-
tion. We describe the major accomplishments of these applications 
while using only vibration sensors.

The majority of existing approaches for person identifica-
tion and fall down employ either wearable devices [248–250], 
video cameras [251–253], or bio-metrics [254–256]. However, ef-
forts have been done to utilize other non-conventional and non-
intrusive sensors for both identification and fall alert; for example 
using WiFi signals [257–261], passive infrared sensors [262,263], 
inertial sensors [264], force sensors [265], radio frequency [266], 
etc. The vibrations sensors have also demonstrated that are capa-
ble to generate signals to differentiate persons from other objects 
and live creatures. For example, Fig. 9 is extracted from the work 
presented by Park et al. [246] which shows the different types 
of vibration generated by animals, vehicles and people. Further-
more, other works have used vibration sensor to identify exactly 
the person as the footsteps patterns are considered unique from 
person to person [267,268]. Those works illustrate the potential of 
non-intrusive vibration sensors to identify people and most impor-
tantly, identify fall downs.

In this section, we explore the different signal processing and 
machine learning techniques that have been used in personal 
safety (Section 5.1). We also present the different types of sensors 
and/or sensor networks used for each approach (Section 5.2).
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5.1. Data analysis techniques

Similar to occupancy information inference, the data analysis 
techniques for personal safety evaluation vary depending on the 
type of application. Here, we explore relevant works on person 
identification (Section 5.1.1) and fall detection (Section 5.1.2).

5.1.1. Person identification
Person identification is a critical step in multiple smart home 

and security applications. Multiple vibration-based works have 
been developed to differentiate humans from animals and vehicles, 
discriminate gender, identify one person among multiple potential 
people, etc.

One of the first attempts at people identification with ac-
celerometers was made by Ailisto et al. [269] in 2005. The method 
was a significant shift from the mainstream gait recognition re-
search relying on computer vision [270–272] or other types of 
sensor installed on the floor [273]. The authors in [269] developed 
a gait recognition method, which uses the acceleration signals pro-
ducing by walking. The walking person has to carry a mobile de-
vice (in this experiment one laptop) with an accelerometer. Only 
one sensor was used for this work, and only signal processing 
techniques were employed. Using the three-channel accelerometer 
(x, y and z), the method aims to generate a “gait code” composed 
of the average x (forward), z (vertical), and acceleration signals for 
a and b steps. a and b are the “right” and “left” steps. The iden-
tification phase starts with the generation of current c and d gait 
codes as in the training phase. Then, a comparison of the current 
gait with the enrolled gait is performed using cross-correlation. A 
threshold T is used to evaluate whether the correlation coefficient 
average is accepted or rejected for identification. The accuracy is 
reported between 72% and 88%. However, the method is prone to 
errors due to changes in the speed of walking, change of shoes, 
and ground. Also, in 2005, Mantyjarvi et al. [274] used a similar 
methodology. A person carries a portable device. Only one sen-
sor was used for this work, and only signal processing techniques 
were employed. The data is first normalized to a range of -1 and 1 
and then it is processed using correlation. Unlike [269], authors 
add frequency-domain methods and data distribution statistics. 
The motivation of using frequency-domain methods is based on 
the assumption that there is a characteristic distribution of fre-
quency components for each person in the walking signal. The 
data distribution statistics were added under the assumption that 
characteristics of the signal shape affect the data distribution. A 
comparison of the current step models with the templates is per-
formed with cross-correlation similar to [269]. Also, the authors 
calculated the Fast Fourier Transform (FFT) for the signals x and 
z of the accelerometer. The first 40 FFT coefficients per channel 
are concatenated as a feature vector and used for identification. 
Also, 10-bin histograms normalized by the length of the data are 
composed of x and z acceleration signals. The histogram is con-
catenated as a feature vector. Also, third and fourth-order moments 
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are calculated as a feature vector. All these feature vectors are used 
in conjunction with the correlation to accept and reject the iden-
tification. The accuracy of the method is ranged between 60% and 
85%.

Another effort to person identification with vibration sensors 
was made in 2008, Park et al. [246] presented a technique to dis-
criminate between vehicles and human footsteps using a Dynamic 
Synapse Neural Network based on vibration sensor data. The ap-
proach also had the feature of eliminating quadrupeds’ footsteps. 
Later in 2009, Park et al. [275] utilize a seismic vibration sen-
sor to discriminate human footstep from quadrupeds. They pro-
posed a Cadence-based analysis of temporal gait pattern to see 
the statistical difference between walking of humans, horses, and 
dogs. The overall accuracy was 95%. In the same line, Mehmood et 
al. [276] presented in 2012 a method to discriminate bipeds from 
quadrupeds. Specifically, the authors collected vibration data from 
humans and horses using geophones on the floor. The data was 
processed and features were extracted to apply an SVM classifica-
tion (binary classification). They achieved an accuracy of more than 
90% on signals of length 15-20 sec. Xin et al. [277] also have classi-
fied vehicles, humans, and animals with PIR and seismic (vibration) 
sensors. The authors used Wavelet Transform and Probabilistic Fi-
nite State Automata (PFSA) for feature extractions. With the help 
of seismic sensors, they achieve an accuracy of 97.3% for humans 
and animals.

In 2015, Pan et al. [267] presented a pioneer work on per-
son identification with non-intrusive vibration sensors. The system 
detects signals induced by footsteps, extracts features from these 
signals, and applies a hierarchical classifier to these features to 
identify each registered user. The signal is gathered by a “sens-
ing hardware”, which consists of a geophone, an amplifier, and 
an analog-to-digital converter (ADC). Multiple sensors are using in 
this approach and no communication between them is required as 
the results are made off-line. This sensor used a sampling rate of 
25 kHz. The “step extraction” is done by modeling the noise as a 
Gaussian distribution and then apply an anomaly detection method 
to extract step events. The threshold value to detect a step event is 
determined by an allowable false alarm rate. Once the events are 
extracted, the system performs the “feature extraction” by using 
only the normalized signal of the first five steps closest to the sen-
sor that has the highest Signal-to-Noise Ratio (SNR). For each step, 
the system computes time-domain (standard deviation, entropy, 
peak values, partial signal before and after the maximum peak, 
etc.) and frequency-domain (spectrum centroid, location, and am-
plitude of peaks, power spectrum density, etc.) features. Then, the 
system conducts a “step level classification” by taking features of 
step events from different people’s traces to generate a classifica-
tion model using Support Vector Machine (SVM), which maximizes 
the distance between data points and the separating hyper-plane. 
The multi-class C-Support Vector Classifier (C-SVC) [284,285] from 
LIBSVM library [286] is applied with the Radial Basis Function 
(RBF) kernel to perform the non-linear separation. The step level 
classification with LIBSVM gives out both the identification label 
and the confidence level as the result of testing the step event. 
The accuracy of the system was enhanced by using a confidence 
level threshold that allows to determine whether the classifica-
tion result of the trace is reliable enough for identification. The 
system achieves over 83% identification accuracy when identifying 
every trace for five people. Also, trace level classification improves 
to 96.5% when the system focuses on the top 50% traces that are 
more confident.

Later in 2017, FootprintID, an indoor pedestrian identification 
system that utilized footstep-induced structural vibration was pre-
sented by the same group of Pan et al. [278]. The system identifies 
a pedestrian through his footstep-induced vibration. The walking 
speed and step location variation of footsteps is characterized and 
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utilized to achieved robust person identification. Multiple sensors 
were deployed, and machine learning techniques were used for 
identification. In this paper, the authors present a transductive 
learning algorithm RTSVM and an improved ITSVM that dynami-
cally updates the model of the labeled data based on the walking 
speed and step localization of a person’s footstep to extend the 
classifier and to handle extreme cases. The system achieved an 
accuracy of 96% and 3X faster than normal Support Vector Ma-
chine approaches. The same year, Anchal et al. [279] present an 
approach to predict the gender of a person from their footfalls 
using a vibration sensor. They tested various machine learning ma-
chine techniques on their dataset. Using a Linear-SVM, the authors 
achieved an accuracy of 94.56%.

Mukhopadhyay et al. [280] presented an approach to detect in-
truders and predict his/her state of motion using geophones. The 
authors proposed an event extraction technique for detecting foot-
fall events and extracting portions of the signal that correspond 
to an event. Then, using a Support Vector Machine with a Gaus-
sian Kernel (SVM-RBF), the authors predict presence. Later, in 2018, 
Han et al. [281] presented a person identification application using 
accelerometers and gyroscope. The approach was based on the ex-
traction of multiple features in the time and frequency domain, 
and on the utilization of a Gaussian Support Vector Machine for 
training and testing modules. When multiple occupants were in 
the same place, a multi-class SVM was used to identify each one 
of them. The application reached around 96% of accuracy on iden-
tification without labeled training data. For the unknown labels 
scenario, the authors utilized a hybrid approach of unsupervised 
and supervised learning techniques. Similar to the known labels 
scenario, the history data was used to process and extract fea-
tures. They used clustered indices as quasi-labels that substitute 
the ground truth labels. Quasi-labels represent different clusters, 
or groups, corresponding to the history data. While clustering al-
gorithms such as K-Means provide linear decision boundaries, the 
authors in this paper designed an approach called SenseTribute us-
ing classification as the backbone framework for the simplicity of 
integrating both known and unknown labels scenarios.

In 2019, Clemente et al. [268] present an indoor person iden-
tification approach using geophones. Similar to other works, the 
author used time-frequency feature extraction and a support vec-
tor machine for identification. The innovation of this work was 
the introduction of an in-situ real-time voting system to improve 
accuracy. Each sensor collaborates by transmitting their individ-
ual person recognition and the energy event. The unit with the 
highest event energy calculates and identifies the person. The ap-
proach reached an accuracy of 93.75%. The same year, Anchal et 
al. [282] proposed a person verification system based on foot-
fall signatures using Gaussian Mixture Model-Universal Background 
Model (GMM-UBM). In this paper, different scenarios were evalu-
ated to evaluate the robustness of the systems. The authors pre-
sented a comparison of the Half Total Error Rate (HTER) of the 
proposed system with other approaches based on SVM, and Con-
volution Neural Networks (CNN). It turned out that the proposed 
system over-performs traditional methods up to 46%.

Recently, in 2021, Anchal et al. [283] proposed an unconstrained 
biometric authentication system that utilizes footstep information 
collected by geophones. The main advantage of this work is that 
it does not require any special orientation or positioning of the 
subject. Registered and unregistered users were used for multiple 
tests to identify people and intruders. The authors proposed the 
use of an unsupervised learning-based event detection/extraction 
technique called USLEET. The proposed method works in training 
and live phases. In the training phase, an Unsupervised learning 
algorithm called GMM was used to cluster the samples into two 
classes, footstep, and noise (absence of an event). In the live phase, 
signal segmentation, feature extraction, and GMM model are ap-
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Table 10
Vibration-based approaches for person identification.

Paper Sensor Data analysis technique Type of recognition Performance Year

[274]•1 Accelerometer • Data distribution statistics Person recognition Accuracy 60 − 85% 2005
• FFT and feature vector

[246]�2 Geophone • Dynamic Synapse Neural Network (DSNN) Vehicle recognition Accuracy 93.3% 2008
500 Hz Human recognition Accuracy 98.3%

Dog Recognition Accuracy 99.9%

[275]•1 Geophone • Candance-based analysis Single Human recognition Accuracy 98.54% 2009
100 Hz • Statistical difference approach Multiple Human recognition Accuracy 98.02%

Horse Recognition Accuracy 98.14%

[277]�2 Geophone • Wavelet Transform Animals vs humans Accuracy 97.3% 2011
10 kHz • Probabilistic Finite State Automata (PFSA) discrimination

• Support Vector Machine

[276]�2 Geophone • Time-frequency feature extraction Horses vs humans Accuracy 90% 2012
1 kHz • Support Vector Machine discrimination

[267]�2 Geophone • Time-frequency feature extraction Person Identification Accuracy 96.5% 2015
25 kHz • Support Vector Machine and Trace-Level Classification

[278]�2 Geophone • Iterative Transductive Learning Algorithm (ITSVM) Pedestrian Identification Accuracy 96% 2017
1 kHz • Confidence Threshold

[279]�2 Geophone • STA/LTA for event detection Gender Prediction Accuracy 94.56% 2017
192 kHz • Time-Frequency Feature Extraction and Linear SVM

[280]�2 Geophone • SVM-RBF Classifier Intruder Detection Accuracy 77-86% 2017
8 kHz • Adaptive Thresholding

[281]�2 Accelerometers 5 kHz • Time-Frequency Feature Extraction Person identification Accuracy 96% 2018
Gyroscope • SVM-RBF Classifier and multi-class SVM

[268]�2 Geophone • Time-Frequency Feature Extraction Person identification Accuracy 93.75% 2019
1 kHz • SVM and in-situ Weight Voting System (WVS)

[282]�2 Geophone • Time-Frequency Feature Extraction Person verification HTER 7% 2019
8 kHz • Gaussian Mixture Model (GMM)

• Universal Background Model (UBM)

[283]�2 Geophone • Unsupervised Learning Event Detection/Extraction Technique Person identification Accuracy 90-94% 2021
8 kHz • Gaussian Mixture Model (GMM) Imposter Detection Accuracy 76-87%

(•) Signal processing data analysis. / (�) Machine learning data analysis.
(1) Only one sensor is used. / (2) More than one sensor is used.
plied to extract the event. The approach reached a good perfor-
mance in multiple types of floors.

Table 10 presents a summary of the recent works on person 
identification using vibration sensors. In this particular application, 
the majority of the studied papers utilize ML techniques (eleven 
out of thirteen) because these approaches rely on a classification 
method.

5.1.2. Fall detection
Much work has been done in the area of fall detection. Thus far, 

there are already several other overview papers on fall detection 
system implementation; for example [287–294]. A vast majority 
of fall detection systems using vibration data apply the threshold-
based methods to detect the fall. Even though those methods are 
able to detect when a fall occurs, the rate of false positives is high. 
Also, a single threshold is not as accurate as wanted due to unique 
person’s characteristics and behavior. Thus, to reduce these false 
positives, machine learning techniques are applied in fall detec-
tion systems. Yet not a single machine learning method is widely 
recognized as most effective and new approaches are still being 
introduced. Another problem is lack of real-world data. The ma-
jority of the works utilize simulated data, which is not as similar 
to the real-world data as expected. However, we describe here the 
most prominent works and their techniques for fall detection with 
vibration sensors. For works developed before 2012, we refer the 
reader to the survey paper by Bangala et al. [292] that presents 
multiple fall detection systems based on accelerometers.
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Because the vibration signal of environmental noise and foot-
steps are much different than the signal generated by a fall down, 
an important number of works for fall detection is based on 
threshold methods [295–297]. However, the vast majority utilizes 
machine learning techniques to classify falls from other every-
day events. These works are presented in Table 11. For example, 
Tong et al. [298] introduced, in 2013, a fall detection and predic-
tion method using based on Hidden Markov Model (HMM). The 
approach used tri-axial accelerometers, and the acceleration time 
series extracted from human motion processes were used to de-
scribe human motion features and falls. The authors also stated 
that the outputs of the HMM can be used to evaluate the risk of 
falls. The work reported accuracy of 100%. Later, in 2015, Summer 
et al. [299] proposed the use of seismic sensors to discriminate fall 
downs. The system evaluated the use of K-Nearest Neighbor (KNN) 
and Support Vector Machines (SVM) to classify the events. The best 
accuracy was achieved with SVM. Other works also incorporate the 
valuation of multiple machine learning techniques on acceleration 
data [300]. In these approaches, the sensors were placed on the 
human body.

The approaches that are based on geophones [301,220] use sen-
sors placed on the floor. For example, in 2019, Huang et al. [301]
utilized multiple geophones on the floor to detect falls. In this 
study, the authors used an HMM fed by features that were ex-
tracted using Discrete Wavelet Transform (DWT). To reduce the 
false alarm rate, the authors proposed a reconfirmation mecha-
nism called Energy-of-Arrival (EoA), which enables the system to 
achieve fine-grained indoor positioning without high sampling fre-
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Table 11
Vibration-based approaches for fall down detection.

Paper Sensor Sensor-location Data analysis technique Alarm Error Year

[298]•1 Tri-axial Accelerometer Waist • Hidden Markov Model (HMM) N/A 0% 2013

[295]•1 Shimmer Accelerometer Waist • Threshold N/A 0% 2015

[296]•1 ADXL345 Accelerometer Waist • Threshold Y ∼ 3% 2015
100 Hz

[299]�2 USB-1208FS sensor Floor • Wavelet Coefficient Characterization N 2015
• Spectral Statistics
• K-Nearest Neighbor (KNN) 2.3%
• Support Vector Machine 0.76%

[297]�1 Accelerometer Chest, waist, • Feature extraction & Support Vector Machine Y 5-7% 2017
arm, hand • Threshold

[300]�1 Accelerometer Waist • Logistic Regression N ∼ 5% 2017
• Decision Tree ∼ 6%
• K-nearest Neighbor ∼ 10%
• Support Vector Machine ∼ 4%
• Naive Bayes ∼ 1%

[303]�1 Accelerometer Waist • Mean and Range feature extraction N < 1% 2019
• Support Vector Machine

[301]�2 Geophone Floor • DWT feature extraction Y ∼ 4% 2019
• Hidden Markov Model (HMM)
• Energy of Arrival (EoA)

[220]�2 Geophone Floor • Time and Frequency domain feature extraction Y 4.86% 2019
• Support Vector Machine

[302]�2 Accelerometer Floor • K-Means clustering and K-Nearest Neighbor algorithm Y ∼ 5% 2021

(•) Signal processing data analysis. / (�) Machine learning data analysis.
(1) Only one sensor is used. / (2) More than one sensor is used.
quency. The accuracy of this work was about 96%. In the same year, 
Clemente et al. [220] also proposed a fall detection mechanism 
based on deployed geophones. In this case, time and frequency 
domain features were extracted to feed a Support Vector Machine 
that classifies the fall from other events. The innovation of this 
work is that besides detecting the fall, the localization of the fall 
is also estimated.

In 2021, Shao et al. [302] developed a framework of using floor 
vibration to build the pattern recognition system in detecting hu-
man falls based on a machine learning approach. They conducted 
fall experiments with a scaled 3D-printed human body model’s 
fall. The human body model with twelve fully adjustable joints 
they built is 1:4 to actual human body size with consideration of 
body part lengths, connecting main joints, and body weight pro-
portions. The model is used to simulate a conscious person who 
is capable of controlling all of his limbs and standing up straight 
or an unconscious person unable to control his body by tight-
ening or loosening the screws on the model. The vibration from 
model’s falls is recorded with a mobile phone with a built-in low-
sensitivity accelerometer, intended to detect human falls. The sam-
ple frequency of the test is 100 Hz. The acceleration data collected 
show that there is rapid attenuation after the fall. They also exper-
imented object drops using a ruler with the same weight as the 
body model. The object is dropped from the same height as the 
center of gravity of the model. The vibration data is recorded from 
the time of the fall to the end of the last rebound. The experiments 
with human body model fall and an object fall intended to observe 
whether the floor vibration frequencies can be differentiated. They 
conducted a total of 314 experiments (107 object drops, 97 body 
model forward falls, and 110 body model backward falls).The de-
tection accuracy was over 90%.

With the increasing aging of the population and the potential 
risk of falls, it is certain that more approaches using non-intrusive 
methods such as vibration sensors will come out as an alternative 
to traditional person-intervention approaches. Table 11 presents a 
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summary of the recent works on fall detection using vibration sen-
sors. Note that the majority of the studied papers (six out of nine) 
rely on ML techniques because the classification of the falls is a 
critical task on these types of approaches.

5.2. Single sensors vs sensor networks

Similar to indoor characterization approaches, the methodolo-
gies proposed for personal safety (person identification and fall 
detection) are based on the use of multiple sensors. Then, the op-
portunity to take advantage of sensor networks is prominent. In 
fact, works like the one presented in [268,220] utilize sensor com-
munication and in-situ computing to identify people and to locate 
falls. These works open the door to multiple applications in which 
sensors can compute in real-time and collaborate with each other. 
These kind collaborative approaches will be likely to lead the ef-
forts for smart home applications in the new era.

6. Infrastructure health monitoring

The original motivation of the infrastructure monitoring is to 
detect the seismic damages to buildings caused by the shaking and 
damage from earthquakes [308]. Later, monitoring works are devel-
oped to handle the continuously changing environments subjected 
to not only earthquakes but also other natural hazards such as 
storms and hurricanes, and artificial/anthropogenic hazards such as 
explosions [309]. Vibration sensors have been used to detect and 
monitor the infrastructure health. The concept of infrastructure 
can be broad, including multi-story building [308], super high-rise 
building monitoring [304], radioactive waste repository [310], dam 
health monitoring [305], train-triggered building monitoring [306], 
tunnel monitoring [307], mine planning [311,312], etc. Vibration 
signals can be viewed as an important resource for monitoring in-
frastructural health, or locating damages.

Fig. 10 shows some representative vibration-based infrastruc-
ture health monitoring applications. In general, the infrastructure 
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Fig. 10. Infrastructure health monitoring based on vibration sensor networks. (1) super high-rise building monitoring [304]; (2) dam health monitoring [305]; (3) train 
tracking [306]; (4) tunnel monitoring [307].
health cannot be effectively monitored using single vibration sen-
sor which cannot characterize the properties of the whole infras-
tructure. Instead, sensor networks are typically adopted, for ex-
ample, a broadband seismic land streamer for urban underground 
infrastructure was proposed by Malehmir et al. [313] and sensors 
deployed on multiple stories of a building was adopted by Wu et 
al. [304]. The recent developments of instruments and method-
ologies make it possible to apply seismic imaging techniques to 
building health monitoring using spatially dense seismometer ar-
rays, as shown in Lin at al. [314].

The Community Seismic Network (CSN) is one good example 
of the low-cost networks [316,317]. Now it is possible to ana-
lyze continuous vibration data on a small spatial scale and with 
a high spatial resolution, thanks to the deployment of multiple tri-
axial accelerometers per floor of the building. Seismometers, such 
as geophones, are typically employed for the infrastructure health 
monitoring. Also, other accelerometer sensors are deployed, for ex-
ample, the low-cost microelectromechanical systems (MEMS) tech-
nology sensors become more and more common in the high-rise 
building monitoring with a 200 Hz or higher sampling frequency. 
Because the sensor cost is not high, it is possible to install vibra-
tion sensors at high densities over small areas, such as the urban 
region of the Los Angeles basin as proposed by Clayton et al. [317]. 
In addition, multiple kinds of vibration sensors can be jointly used, 
for example, surface sensors and borehole sensors corresponding 
to different vibration wave types and components are both used 
for mine planning [311,312].

In this section, we explore the different signal processing tech-
niques that have been used for infrastructure monitoring (Sec-
21
tion 6.1). We also discuss the use of sensor networks in these kind 
of applications (Section 6.2).

6.1. Data analysis techniques

In terms of vibration data analysis techniques, different data 
processing and feature extraction methods have been proposed 
and developed for different applications. In this survey, we roughly 
divide them into two categories: structure property imaging (dis-
cussed in Section 6.1.1) and waveform feature extraction (discussed 
in Section 6.1.2). Fig. 11 demonstrates four examples where two 
are related to structure property imaging and the other two are re-
lated to waveform feature extraction. For example, Fig. 11-(1) show 
the method of anisotropic traveltime inversion where objects can 
be located underground [310], Fig. 11-(2) shows the 3D tomogra-
phy velocity estimation visualization results [313] from an array of 
geophones in a big field. Fig. 11-(3) illustrates a comparison of the 
impulse response functions (IRFs) and horizontal to-vertical spec-
tral ratio (HVSR) for all floors of a building [304], and Fig. 11-(4) 
illustrates different seismograms of a building, relative travel time, 
envelope amplitude, spatial gradient, and the seismic velocity ob-
tained by vibration sensors [315].

Ambient vibration noise has been used for the building dy-
namic property characterization [318–320,319,321,315]. Inspired 
by seismic ambient-noise interferometry techniques, Snider et 
al. [322] first applied the seismic interferometry technique to the 
ambient earthquake data acquired by a sensor networks to mon-
itor the Millikan Library in Pasadena, California. Seismic imaging 
techniques can be applied to spatially dense arrays which mea-
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Fig. 11. Examples of different infrastructure health monitoring methods. (1) Results of anisotropic traveltime inversion, a.k.a. structure velocity [310]. (2) The 3D tomography 
velocity estimation visualization results [313]. (3) Comparison of the impulse response functions (IRFs) and horizontal to-vertical spectral ratio (HVSR) for all floors [304]. (4) 
Seismograms, relative travel time, envelope amplitude, spatial gradient, and the seismic velocity [315]. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)
sure vibration signatures between pairs of vibration sensors via 
cross correlation as proposed by Valero et al. [323]. The ambient 
building responses to vibrations are recorded by accelerometers, 
then the signals from a dense seismic array of three-component 
nodal seismometers are adopted in the seismic ambient noise 
interferometry, which can provide the infrastructure dynamic in-
formation [318].

The data processing procedure for extracting propagating vibra-
tion signals from ambient noise has been largely stabilized and 
shown sufficiently good performances [324]. In general, the proce-
dure includes three phases: (1) single-station data preparation, (2) 
cross-correlation and stacking to a desired time-series length, and 
(3) dispersion measurement as well as velocity estimation. Note 
that this procedure can be entirely autonomous to effectively and 
efficiently process large sensor data streams from sensor networks 
deployed on large-scale infrastructures [325].

6.1.1. Structure property imaging
In single-station data preparation, denoising and normalization 

have been applied to remove the interference and contamina-
tion from earthquakes, instrument irregularities, and other noise 
sources near sensors, such as human activities and weather events. 
In addition, besides all kinds of filters such as bandpass filter, spec-
tral whitening and similar operations can also be used to enhance 
the signal bands of interest. Next, cross-correlations will be com-
puted and stacked to extract the Green function, based on which 
group and phase velocities can be measured using frequency–time 
analysis (FTAN) on the dispersion curve [326,323,191]. For struc-
ture imaging, the majority of the works used signal processing 
techniques with certain modifications of similar methodology, like 
the one presented in Fig. 12.
22
Fig. 12. Schematic representation of the data processing scheme for structure prop-
erty imaging. Image from [324].

Specifically, the building vibration responses can be estimated 
using impulse response functions (IRFs), which can obtained fol-
lowing [322,318]:
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Fig. 13. Three different waveform features to analyze building health, specifically refuge floors extracted from [304]. (a) EE crosscorrelation component of the signal, (b) 
Peaking amplitude, and (c) Horizontal to-vertical Spectral Ratio (HVSR). In this study, first floors are refuge floors. The different features provides an idea of the quality factor 
of those floors.
Dij(zn, z2, t) =
〈
F−1

(
vi(zn)v∗

j (z2)

|v j(z2)|2 + ε

)〉
, (1)

where, the asterisk ‘*’ denotes complex conjugate; i and j repre-
sent the ith component of the receiver station and the jth com-
ponent of the virtual source station, respectively. F−1 indicates 
the inverse Fourier transform, and the brackets denote stacking 
in the time domain [327]. In addition, ε is the stabilization fac-
tor, which can be defined as 1% or 2% of the average spectral 
power, to make the deconvolution calculation numerically stable. 
Note that the IRFs of different signal components can be obtained 
using vibration sensors deployed in the different locations in the 
infrastructure. These IRFs are used to create an image of the in-
frastructure that can help on the monitoring of its general health.

6.1.2. Waveform feature extraction
Another data processing technique that has been widely used 

for infrastructure monitoring is the analysis of the Waveform. The 
infrastructures can be approximated as a continuum, so different 
material properties can be extracted to characterize the varia-
tions [315]. Low-cost vibration sensors and sensor networks make 
it possible to instrument infrastructures on a floor-by-floor scale. 
In addition, the continuous vibration recordings at high sampling 
rates provide the opportunity to acquire the dynamic information.

Compared with the structure property imaging which typi-
cally characterizes the infrastructure health based on the seismic 
velocities, waveform feature extraction techniques provide other 
characteristics, such as Fast Fourier Transform (FFT) frequency re-
sponses [328,329], quality factor [318], power spectral density 
(PSD) [330], horizontal to-vertical spectral ratio (HVSR) average 
PSD [304], etc., and have been widely adopted in various types 
of structures to detect damages.

Waveform feature extraction of the propagating vibration waves 
leverages the success of high-resolution velocity imaging tech-
niques applied to sensor networks deployed in the buildings to 
detect and map the potential damage signatures in vibration wave-
forms. For example, a recent work presented by Wu et al. [304], 
extract features directly from the waveform signatures of a build-
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ing to evaluate the quality factor (Q ) of the refuge areas. A refuge 
area is a building area designed to hold occupants during a fire 
or other emergency, when evacuation may not be safe or possible. 
The authors extracted information of multiple sensors deployed on 
the building and determine the potential damages of the refuge 
areas; all based on the waveform features. Fig. 13 shows three 
different building signatures obtained with signal processing tech-
niques to evaluate the refuge floors health. In summary, using the 
waveform features or signatures, the infrastructure properties can 
be monitored and damages can be detected.

6.2. Single sensors vs sensor networks

In infrastructure monitoring applications the common denom-
inator is the use of multiple sensors. In order to obtain either an 
image of the infrastructure or a general overview of the building’s 
health, the signal processing techniques used in all the studied 
works require the information of an array of sensors. The first 
works, typically performed manually extraction of the data inside 
the sensors for post-processing [331,324]. Other works have pre-
sented the possibility to remotely extract the data from the sen-
sors [332,333]. Most recently, some infrastructure and subsurface 
monitoring techniques have taken advantage of sensors capabili-
ties and have proposed in-situ computing methodologies, in which 
sensors are able to process the data in the field and collaborate 
with each other for generating infrastructure images [190,192,323]. 
For example, Valero et al. [323] presented a comprehensive eval-
uation of an array of sensors that collaborate with each other to 
imaging a subsurface pipeline. The evaluation included the band-
width utilization of the sensors, the communication cost, and the 
packet lost influence on the results. We believe that this trend is 
going to continue, and more building monitoring applications with 
smart vibration sensors will be available in the near future.

In summary, infrastructure health monitoring researches focus 
on analyzing the infrastructure properties based on vibration sen-
sor networks. Although the data analytics methods could be simi-
lar, due to the different environment, variant events, sensor prop-
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erties, and so on, researchers need to modify their methodologies 
according to their applications.

7. Future research trends

The use of non-intrusive sensing for health and safety is achiev-
ing promising results. There are many research directions that can 
be further investigated, and we envision the following seven pos-
sible areas.

7.1. Collaborative vibration-sensing approaches

Instead of manually collecting the data from the sensors or per-
form off-line estimations, we believe that new approaches will 
consider exploiting the advantages of current sensors and net-
works. This kind of approach will be the base for future work in 
which multiple sensors can independently interact with each other 
to perform estimations. Some studies have been started to intro-
duce this kind of vibration sensors interactions [191,192,205,220,
268], and we strongly believe that this will be one of the impor-
tant paths for vibration data research.

7.2. Physical-aware and self-configuration

Another promising path is the incorporation of physical-in-
formed and self-configuration sensing as it was initiated by He et 
al. [247]. Incorporating physical phenomenon knowledge to sens-
ing will increase the accuracy of multiple applications such as 
vital sign monitoring and fall detection. Also, self-configured sens-
ing system will provide a way to minimize human intervention 
and training data. Deep learning may bring more opportunities 
for vibration-based systems, which simplifies the deployment and 
makes the systems configuration-free.

7.3. Learning techniques for health monitoring with vibration

As presented in this paper, few studies have used learning tech-
niques to monitor and assess human health from vibration data. 
With the exception, for example [36,71], the majority of the ap-
proaches to estimate heart and respiration rates are based on pure 
signal processing techniques. While these techniques are fast and 
computer-economic, the use of more advanced machine learning 
techniques based on the signal processing features may provide 
useful information to infer the health status of the subject. The 
same can be applied to infrastructure monitoring, where the ap-
proaches are based on signal analysis only. We envision that ma-
chine learning will be applied as a routine in future health moni-
toring based on vibration.

7.4. Multi-people sensing

Sensing, monitoring, and tracking multiple people at the same 
time is still an open problem in vibration-sensing approaches. 
Some works have claimed the tracking or monitoring of more than 
one person [52,70]. However, those approaches can only separate 
two people’s walking or hearts. The use of high-resolution vibra-
tion sensors can help to generate fine-grained signals and the ap-
plication of more advanced techniques for source separation. We 
envision that multi-people approaches will be ruling the research 
on vibration-based applications as more practical scenarios need 
to be tested for the final incorporation of these technologies in the 
real world.

7.5. Analysis of the dynamic nature of vibration

Due to the complicated and dynamic nature of vibration in 
the real world, the majority of the applications are data-driven. 
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Nowadays, multiple efforts have been done to test the approaches 
in diverse scenarios to guarantee results stability. For example, 
Clemente et al. [35] tested their vibration-based sleep monitoring 
system on multiple houses, mattresses, and floor structures. Mir-
shekari et al. [219] and Clemente et al. [220] detected footsteps 
in different floor structures. However, analyzing and understand-
ing the nature of vibration in different structures is still an open 
problem that requires more studies to develop techniques that 
overcome the heterogeneity of the vibration signal.

7.6. Privacy of the data

In the papers that have been studied in this survey, there is no 
further consideration of data privacy. In certain types of applica-
tions, like human health monitoring, personal behavior and person 
identification, the privacy of the studied subjects is a fundamen-
tal piece of those monitoring systems. Even though the data that 
comes from vibration sensors can be easily de-identified [334], 
there is a demand for researchers to develop privacy-preserving 
solutions such that: 1) data privacy is protected during transmis-
sion to the Cloud or other devices, 2) sensory data will not be 
abused by adversaries to infer user sensitive information. This is, 
without question, a research opportunity for the community.

7.7. Extraterrestrial bodies analysis

Vibration sensors have been used by the National Aeronautics 
and Space Administration (NASA) in the InSight mission [335] that 
deployed a single seismic station on the Martian surface in 2018. 
We envision multiple signal processing and machine learning ap-
proaches, used with vibration sensor data, can be used for extrater-
ritorial explorations. In the past, the correlation of seismic noise 
has been utilized to measure the subsurface velocities in extrater-
ritorial bodies like moon [336]. We believe that multiple collabo-
rative vibration sensors can be deployed in environment-resistant 
sensors that can use a sensor network to study underground prop-
erties in other planets.

8. Conclusion

In this paper, we surveyed state-of-the-art vibration-based sys-
tems and applications for health and safety. We discussed the 
signal processing and machine learning techniques used in these 
works. Overall, vibration-based sensing is a promising technology 
from a broad spectrum of smart home and environmental applica-
tions. These however have yet to be a replacement for conventional 
sensing mechanisms due to the initial configuration requirements 
and lack of integration with real-time collaborative sensor net-
works. The recent advances in machine learning and deep learning 
may offer great help for developing configuration-free systems. In 
terms of human health assessment and monitoring, we showed 
that vibration sensors have been widely used for heart and res-
piration rate estimation and sleep monitoring. However, the ma-
jority of the used techniques rely on signal processing approaches, 
which leaves space for more research based on machine learning 
techniques. In terms of safety applications such as personal identi-
fication and fall detection, the vast majority of prior works rely on 
the use of machine learning techniques; however, the main prob-
lem is still the differentiation of multiple sources from multiple 
people generating vibration at the same time. This survey shows 
the potential of vibration-based technologies for a wide variety 
of applications. We believe that there are still multiple proper-
ties that can be studied and used to continuously leverage this 
non-intrusive technology. As presented in Future Research Trends 
(Section 7), there are still multiple areas and challenges that need 
to be addressed in the coming years in order to standardize the 



M. Valero, F. Li, L. Zhao et al. Digital Signal Processing 114 (2021) 103037
use of vibration-technologies in today’s human and infrastructure 
safety/health monitoring.
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