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Abstract—Innovations in health monitoring systems are fun-
damental for the continuous improvement of remote healthcare.
With the current presence of SARS-CoV-2, better known as
COVID-19, in people’s daily lives, solutions for monitoring heart
and especially respiration and pulmonary functions are more
needed than ever. In this paper, we survey the current approaches
that utilize the advantages of sensor technologies to sense, ana-
lyze, and estimate health data related to respiration, heart, and
sleep monitoring. We focus on illustrating the signal processing
and machine learning techniques used on each approach to
facilitate researchers’ understanding of how data is processed
nowadays. We have classified the reviewed papers into two main
categories: contact and contactless sensors. In each category, we
discuss the different types of used sensors, the data analysis
technique, and the accuracy of those techniques.

Index Terms—Signal processing (SP), machine learning (ML),
remote monitoring, internet of things (IoT), respiration and
pulmonary function.

I. INTRODUCTION

Health monitoring systems are widely used for patients
who need isolated care, unconscious patients who cannot get
medical attention for themselves, and also for neonatal patients
who need special attention. The recent coronavirus pandemic
has enabled more applications for remotely respiration, heart,
and sleep monitoring on large scale. As it is well-known,
monitoring systems rely on sensor technologies. Currently,
there are multiple research studies for remote monitoring using
different types of sensors. In this paper, we analyze the current
state-of-the-art sensor technologies used for health monitoring.
This survey is also important to help researchers to know
the remaining challenges of the different sensing techniques
used. We have categorized the sensors based on contact and
contactless technologies; all these technologies are related to
monitoring respiratory rates, heart rates, and sleep patterns.
Additionally, we categorized the approaches’ techniques and
used algorithms based on signal processing (SP), and machine
learning (ML). In this study, we are going to review the
different sensor and data analysis techniques currently used
to monitoring these challenged features.

II. TECHNIQUES REVIEW

We surveyed 38 papers related with remote monitoring
of respiration, heart, and sleep that were published between
2004 and 2021. We classified the type of sensors contact and
contactless technologies. Among these types of sensors, we

classified three type of applications such as respiratory analy-
sis, respiratory & heart analysis, and sleep pattern estimation.
We additionally highlighted the use of pressure and vibration
sensors because those are non-invasive technologies currently
in trend. We also analyzed the data analysis techniques used
on each approach and found papers that relies purely on SP
techniques, mostly of them are based on time and frequency
analysis. On the other side, there is a current tendency on
using ML algorithms for estimating respiration, heart and
sleep patterns. We found techniques that range from logistic &
linear regression (LR) to Deep Learning (DL), Neural Network
(NN), Artificial Intelligence (AI), Random Forest Regression
(RFR), Gradient Boosting Regression (GBR), Adaptive Boost-
ing Regression (ABR), Random Forest Classifier, and Decision
Trees.

Fig. 1 presents the different types of sensors (contact and
contactless) used on each studied approach; the different types
of applications (respiratory only, respiratory & heart, and sleep
monitoring) of the different approaches is also shown in the
figure. Note that we also specify three types of sensors inside
the “contact” sensors: wearable (wear by the user on his/her
body), pressure (pressure sensor that are in contact with the
human body), and vibration (vibration sensors that are also in
contact with the human body).

Fig. 1. Sensor types, applications and techniques of each one of the surveyed
papers.



III. CONTACT SENSORS

The vast majority of the surveyed papers are based on
contact sensors. We define contact sensors as sensors that
either have to be worn by the person (wearable) or touch the
person in some way (like non-invasive pressure and vibration
sensors.) We also surveyed with type of data analysis tech-
niques were used on each approach. In the following sections,
we elaborated the type of techniques used and the advantages
and disadvantages of each approach. Fig. 2 shows the specific
signal processing and machine learning techniques found on
the approaches based on contact sensors.

Fig. 2. Types of data analysis techniques used on surveyed contact sensor
approaches

A. Signal Processing Techniques

1) Wearable Sensors: Frequency and time domain analysis,
filtering processing, and statistical analysis are the common
denominator in the applications that use wearable devices for
respiratory monitoring.

In a survey conducted by Lanata et al. [1], it is shown that
time-domain analysis is used to demonstrate the hypothesis
that the spirometer sensors are not affected by movement
artifacts, and therefore can be considered as gold standard
for respiratory monitoring. On the other side, the frequency-
domain analysis is done to estimate the Fast Fourier Transform
(FFT) of the output signals to analyze their frequency com-
ponents. The four different methodologies to monitor respi-
ration activity include inductive plethysmography, impedance
plethysmography, piezoresistive pneumography, and piezo-
electric pneumography. Those have been implemented into
wearable and comfortable systems using spirometers as sen-
sors. Fig. 3 shows an example of a wearable spirometer for
respiration estimation.

In 2018, Dan et al. [2] presented a wearable respiratory
monitoring sensor measuring measurement of human res-

Fig. 3. Biopac system used as spirometer[1]

piration using frequency analysis of the data. The authors
obtained the angular velocity of an accelerometer to extract
the respiratory waveform, calculate the respiratory rate, and re-
trieve accurate respiratory phase information. The consistency
between the respiratory angular velocity and the respiratory
frequency obtained from the reference signal was represented
by a Bland-Altman. The mixed processing results of the three
frequencies (normal, high, and low) indicate that there is a
high-frequency data point outside of the confident interval. In
general, for these three frequencies breaths, the respiratory rate
obtained by the breathing angular velocity can fulfill the de-
sired requirements, and the respiratory rate can be determined
using the angular velocity acquisition device. Fig. 4 illustrates
the synchronous acquisition system to extract respiratory data
proposed in [2].

Fig. 4. Synchronous acquisition system to extract respiratory data[2]

Few types of sensors also have been developed related to
body movements. For example, Tao et al. [3] use a graphene-
paper sensor for detecting human motions and may in the
future led into respiration estimation. The graphene pressure
sensor is placed in the soles and palm of the hand, and the
motion signals can be tested. It is also applied to the throat of
the tester to detect the vibration signal of vocal cords when
the tester is speaking. This pressure sensor is also effective
for detection of violent pressure changes that shows excellent
performance in the range of 0 to 20 kPa (Kilo Pascal). The
fabrication process is demonstrated cutting the tissue paper
into squares and leave them to soak in the GO solution. Then
with thermal reduction method, the samples are transformed
into reduced GO (rGO) paper. After electrode connection and
encapsulation, the graphene pressure sensors show excellent
flexibility. If combined with a machine learning algorithm and
other technologies, it will be possible for graphene pressure



sensors to achieve gait recognition, motion monitoring, and
other functions. [3]

2) Vibration Based Sensor: Vibration sensors are a non-
invasive technology that provide information of around en-
vironments. The following paper use vibration sensors to
touch a person and extract the information of his/her vital
signs without the need of wear the device all the time.
Nguyen et al. [4] presented in 2019 an approach to monitoring
respiration and heart using vibration sensors and frequency
domain analysis. Using Fast Fourier Transformation (FFT),
the frequency characteristics of the sensor outputs with and
without respiration can be obtained integrated the cantilever
with an air cavity, which, in turn, was connected to a tube
which is able to measure the vibrations. Therefore, the struc-
ture proposed in this study is suitable for development of
wearable devices for monitoring pulse wave, blood pressure,
and respiration rate which is suitable and stable for continuous
health monitoring in various applications. Fig. 5 illustrates the
schematic diagram of the method in [4].

Fig. 5. (a) Conceptual schematic diagram Nguyen et al. method to simulta-
neously measure blood pulse wave and respiration rate using a single sensor
device attached to the nose pad of eyeglasses (b) Sensing principle: The pulse
wave and respiration rate are measured using the low-pass filtered and high-
pass filtered signals of the output of the proposed sensor, respectively. Figure
from [4].

3) Pressure Sensors: Pressure sensors have been also used
for measuring respiration and heart rate when entering in
contact with the person’s body. Chen et al. [5] developed
an approach that utilizes frequency domain analysis for mea-
suring heart and respiration. They developed a system based
on a flexible enhanced Hollow Micro Structured-Self-Powered
pressure sensor (HM-SPS) placed on the bed. It can be
placed directly underneath the chest of a participant with a
bedsheet in between to simultaneously monitor the heartbeat
and respiration waves. The hardware modules, consisting of
a signal filtering unit, an amplifying unit, a converter, and a
Bluetooth transmission unit. The units are integrated into a
minimized circuit board. The software modules include signal
sampling, processing, and displaying units where the real-
time respiration waves, respiration rate, and heart rate were
systematically obtained and transmitted to a mobile phone.

The feasibility for smart non contact real-time heartbeat and
respiration monitoring, a set of hardware and software modules
was utilized. Fig. 6 shows the fabrication and placement of the
sensor proposed in [5].

Fig. 6. Fabrication of the HM-SPS for heartbeat and respiration monitoring
presented in [5] (a) Schematic design of the health monitoring system (b)
Schematic structure of the HM-SPS strip. (i) overall view, (ii) oblique section
view, and (iii) expanded view. The inset in (iii) is a zoom-in HM, which is cut
by a quarter (c) SEM image of the EVA film with HMs. (d) Digital image of
the HM-SPS strip. (e) Surface potential (Os) decay of the FEP electret film

In 2017, Nizami et al. [6] presented a system called
SimNewB. SimNewB consists of a pressure-sensitive mat
(PSM) that acquires data from neonatal patients to estimate
the respiration rate. The results in this research indicate that
the frequency domain approach is superior to the time domain
approach. In the same type of application, neonatal respiratory
monitoring, Bekele et al. [7] presented in 2018 an approach to
monitoring patients in the neonatal intensive care unit (NICU).
They used a pressure sensor a three methods for respiratory
rate estimation: Dyadic Wavelet Transforms (DWT), time
domain peak searching without DWT, and a frequency based
method. In this research study as the actual patient was
consistently moving (e.g. stretching, yawning, adjusting) large
error was produced in the frequency-based method and in
the time-varying RR observation. This can also be noted that
the mean absolute error is being calculated by comparing the
output from the RR estimation method with the gold standard
RR, as determined from the patient monitor data. Fig. 7 shows
the SimNewB system proposed in [7]

Fig. 7. SimNewB lying supine on XSensor PSM over a crib mattress, with
the pressure image shown on the right [7]

In 2020, Valero et al. [8] presented an approach called
R-Mon. R-Mon is an architecture framework consisting on
a pressure sensor, a raspbarry Pi, and a digitizer. R-Mon



captures the pressure signal of a person on the bed and
estimates the respiration using autocorrelation functions and
envelope and peak estimation. The approach is based mostly
on time-domain analysis. The system also provides real-time
visualization of the respiratory data and is envisioned to be
used to help practitioners in planning healthcare resources
during pandemics, and controlling and monitoring patients in
rural and unserved areas. [8]

4) Sleep Monitoring Sensors: Sleep is one of the most
important factors in the neural development of preterm infants,
suggesting that its continuous monitoring could provide an
indicator of such development over time.

In 2016, Rotariu et al. [9] presented a wearable prototype
sensor with an user-friendly Graphical User Interface (GUI)
to estimate the respiratory frequency and apnea episodes
of patients. The device architecture includes a) piezoelectric
thoracic belt attached on the chest with Pneumotrace II res-
piration transducer b) a custom developed module for signal
conditioning containing low noise operational amplifiers; c)
data acquisition module - Arduino Leonardo board based on
ATMega32 microcontroller with A/D convertors d) Tablet PC
running Windows 10 OS (Allview Impera). The interface
has been developed using LabWindows/CVI to display the
temporal waveform of respiratory frequency and to activate the
alerts in the interface when a sleep apnea episode is detected
for the selected patient. The monitoring device is suitable for
continuous long-time monitoring of respiration and detection
of apnea episodes. The approach could be an alternative to
medical supervision in healthcare institutions, with a detection
degree of accuracy similar to the commercially available
devices. Fig. 8 illustrate the framework presented in [9].

Fig. 8. Continuous respiratory monitoring device with Arduino Leonardo
microcontroller board – overall architecture [9]

Because movement counting is important in sleep moni-
toring to determine the restlessness of the body, in 2018,
Soleimani et al [10] present a pressure sensor mat (PSM) to
detect movements in a bed. The authors use a method called
Maximum Distance Occupancy to detected the movements.
Despite the beneficial aspects of the maximum distance occu-
pancy detection method, it is very costly and time-consuming,
because complexity is greatly increased to build the detection
system of this algorithm. The processing time for occupancy
detection was found to be high on the computer system with
an Intel Core i7 2.93 GHz CPU, 8 GB RAM, and Windows
7 Professional SP1 64-bit, so maximum distance occupancy
detection may not be practical in real-time processing.

In the same area, Alaziz et al. [11] present an approach to
detect movements for sleep analysis using a pressure sensor

prototype. The approach uses a simple threshold-based algo-
rithm for in-bed body movement detection using low-end load
cell sensors. The system is called MotionScale, and its compo-
nents include load cell sensors, a differential amplifier, a power
control circuit, and a wireless communication unit (A-to-D
convertor). The software components involve interpolation,
normalization, filtration, feature extraction, and detection and
classification can lead packet loss interference. The ability to
accurately monitor a person’s body movement during sleep can
enable an array of applications, ranging from sleep monitoring
to abnormal body movements detection. A number of bed-
mounted sensing systems have been proposed for this purpose,
including pressure sensors, temperature sensors, ultrasound
sensors, load cell sensors, and custom-made sensors. Fig. 9
shows an overview of the MotionScale.

Fig. 9. Overview of MotionScale System[11]

B. Machine Learning Techniques

Even though the majority of the approaches for respiration,
heart, and sleep monitoring in contact sensors are based
on pure signal processing techniques, there is an increasing
number of approaches that use machine learning techniques
to produce the same estimation.

Park et al. [12] presented the use of vibration sensors
for heart and respiration estimation using deep learning
and neural networks algorithms. The approach is called
HeartQuake which is a low-cost, accurate, non-intrusive,
geophone-based sensing system for extracting accurate elec-
trocardiogram (ECG) patterns using heartbeat vibrations that
penetrate through a bed mattress. The filtered vibration signal
to eliminate noise introduced in the signal collection process
is used as an input to a bi-directional long short-term memory
(Bi-LSTM) based deep learning model to generate correspond-
ing ECG signals.

Inan et al. [13] presented an approach for estimating the
cardiac function using a graph mining algorithm. The approach
is based on a noninvasive wearable device capable of recording
electrical and mechanical aspects of cardiac function and graph
mining techniques analyzing the cardiac response to submaxi-
mal exercise to identify compensated and decompensated heart
failure (HF) states and to track the clinical course of the
patients. The graph analytic technique works based on multiple
extracted features from the seismocardiogram (SCG) signal.
This algorithm can also potentially be implemented in a real-
time monitoring system to evaluate the status of patients with



HF because its time complexity is low. Fig. 10 illustrates the
approach presented in [13].

Fig. 10. SCG and ECG sensing patch [13]. A) The SCG signal represents
the vibrations of the chest wall in response to the movement of the heart
and blood with each heartbeat. SCG is measured using a miniature, 3-axis
accelerometer, typically positioned on the midsternum. B) The SCG signal
consists of vibrations in 3 axes. C) A custom, small, wearable patch for
measuring SCG and ECG signals was designed. The patch is placed on the
chest using 3 gel adhesive electrodes and stores data locally on a micro secure
digital card.

Huang et al. [14] presented a wearable sensor for respiration
and heart monitoring using Random Forest Regression(RFR),
Gradient Boosting Regression(GBR), and Adaptive Boosting
Regression(ABR) algorithms. A pressure-sensing array with
differ4ent elements was utilized for continuous blood pulse-
wave monitoring. Each element comprises polydimethylsilox-
ane (PDMS), which is a conductive polymer film and an
inter-digital electrode pair on a flexible substrate. In order to
remove noise and artifacts from the raw pulse-wave signals, a
Hilbert–Huang transform (HHT) method was employed to pro-
cess the data. The measured pulse wave signals corresponded
to the simultaneously measured systolic blood pressure (SBP)
and diastolic blood pressure (DBP) of the patient.

Chen et al. [15] presented a wearable sensor for respiratory
monitoring using a random forest classifier and decision trees
implemented in Python. The wireless wearable sensor is com-
posed of an “emitter” to radiate ultrasound and a “receiver” to
receive the distance-elapsed attenuated ultrasound. It also has
two sensors to monitor the chest and abdominal respiration
within quiet breathing. Characterized by its ability to reduce
overfitting problems and rank the importance of variables in
classification naturally, the random forest classifier has been
widely used in machine-learning applications. Even though
the generic classifier displayed low accuracy in predicting the
posture of the subjects, this study showed consistent accuracy
in monitoring the respiratory behavior of the subjects for
managing respiratory diseases.

Raj et al. [16] presented a 3-axis accelerometer for mon-
itoring respiration using a Linear Regression algorithm. A
gateway device was also used for cloud connectivity which
is typically a smart phone/tablet using Bluetooth. One of the
major problem faced in the clinical environment was device
misplacement, primarily because of the small form factor.
Accuracy is limited in range, movement of the subject and
presence of objects or people nearby. Fig. 11 shows the
hardware block diagram and PCB design presented in [16].

Table I and table II shows a summary of the diverse contact
techniques for remote monitoring of respiration, heart and

Fig. 11. Hardware block diagram and PCB design[16]

sleep.

IV. CONTACTLESS SENSORS

We also surveyed papers that utilize contactless or non-
contact sensor technologies. Fig. 12 shows the graphical
presentation of the different surveyed sensors.

Fig. 12. Different type, application, technique used in Contactless Sensors.

Shahid et al. [17] presented respiratory monitoring sensors
in 2020 that uses machine learning techniques for the diagno-
sis, screening, tracking, and prediction of COVID-19. In their
review many ML techniques were used (Please refer to Table
I to VI in the paper [17]). The techniques include: Support
Vector Machine (SVM), Deep Learning, AI, Linear Regression
(LR), netMHC & netMHCpan, and Neural Networks (NN).
One of the main challenges that researchers faced when
diagnosing using ML techniques was the lack of relevant data
that are made accessible to the public. Lack of data meant
researchers had to use techniques like data augmentation,
transfer learning, and fine-tuning models to improve prediction
accuracy. Though these methods worked well in some cases,
more data would make these models more robust [17].

Kalkan et al. [18] presented a respiratory monitoring system
using time domain analysis. The sensor is a rapid humidity
(RH) based on a low deposition-temperature film, which
demonstrates an ultrasensitive, ultrarapid-response ionic-type
sensor. The unique of this sensor material is the key to its high
sensitivity. With the unique situation of voids interconnected
and perpendicularly oriented to an open film/ambient interface,
the water vapor can diffuse in and out of the sensor rapidly and
uniformly. The ability to control film thickness (i.e., diffusion
length) with deposition time also enables minimizing response
time with ultrathin films. A signal rise/fall of more than 5
orders of magnitude occurs in about 0.2 s or less, pointing out
the strong and very rapid response to the 20%–90% respiration
rate variation making the sensor suitable to capture small
variations in breath.

In 2021, Li et al. [19] presented a respiratory monitoring
approach for measuring shortness of breath with WiFi signals.



The approach is called Wi-COVID. Wi-COVID is based on
frequency spectrum analysis of the WiFi signals. The prototype
uses a WiFi sensing receiver and a Raspberry Pi, which pro-
vides an easy installation and a cheap alternative for COVID-
19 patients and practitioners. To make Wi-COVID economi-
cally attractive, instead of complicated devices or the use of
laptops to capture the signals, the use of a simple Raspberry
Pi will act as access point. The results are transmitted in real-
time to a Cloud server where we configure a visualization tool
that allows the medical practitioner to monitor the patient in
real-time and verify current and historical respiration values.
Fig. 13 present the experimental setup of the approach in [19].

Fig. 13. Wi-COVID experiment setup for COVID-19 patients[19]

Table III shows a summary of the different contactless
approach surveyed in this paper.

V. RESEARCH TRENDS

As can be seen during this review paper, the majority of
the application for respiration, heart, and sleep monitoring
are based on signal processing techniques. However, there is
increasing popularity of machine learning techniques for this
purpose. We believe there are multiple research trends that can
be explored in remote healthcare monitoring. (1) Instead of
manually collecting the data from the sensors or perform off-
line estimations, we believe that new approaches will consider
exploiting the advantages of current sensors and networks.
This kind of approach will be the base for future work
in which multiple sensors can independently interact with
each other to perform estimations. (2) Incorporating physical
phenomenon knowledge to sensing will increase the accuracy
of multiple applications such as vital sign monitoring. Also,
self-configured sensing system will provide a way to minimize
human intervention and training data. Deep learning may bring
more opportunities for vibration-based systems, which simpli-
fies the deployment and makes the systems configuration-free.
(3) While signal processing is fast and computer-economic, the
use of more advanced machine learning techniques based on
the signal processing features may provide useful information
to infer the health status of the subject. We envision that
machine learning will be applied as a routine in future health
monitoring.

VI. CONCLUSION

Currently, one of the major complications of COVID-19
disease is the rapid and dangerous respiration and pulmonary
function deterioration that can lead to critical conditions and
death. This pandemic has placed new demands on the health

systems world, asking for a novel, rapid and secure way to
monitor patients in order to detect and quickly report patient’s
symptoms to the healthcare provider, even if they are not
in the hospital. While tremendous efforts have been done to
develop technologies for in-home monitoring, there are still
gaps that need to be covered. In this paper, we surveyed some
advances on in-home monitoring for respiration, heart and
sleep monitoring. We studied the types of sensors used and
the different data analysis techniques available to understand
and process remote and stream data. We expect this survey
enables researcher to find new trends and gaps for improving
the current state-of-the-art of in-home healthcare monitoring.

REFERENCES
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TABLE I
CONTACT APPLICATIONS FOR HEALTH MONITORING (PART I)

Paper Sensor Monitoring application Data analysis technique Evaluation Year
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[26] Non-wearable - Body-Contact Respiration • Fuzzy logic Mean error 6.17% 2008

[27] Non-wearable - Body-Contact Respiration • Digital processing algorithm / Magnetic Resonance Imaging (MRI) N/A 2013

[28] Non-wearable - Body-Contact Respiration • Body pass localization / Peak detection algorithm Error 3.3% 2014

[6] Non-wearable - Body-Contact Respiration • Frequency domain analysis of mean-shifted N/A 2017
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TABLE II
CONTACT APPLICATIONS FOR HEALTH MONITORING (PART II)

Paper Sensor Monitoring application Data analysis technique Evaluation Year
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