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a b s t r a c t

In this paper, we introduce a novel health and sleep nursing assistant called ‘‘Helena’’
for real-time, contactless, and non-invasive monitoring that can be mounted on a
bed frame to continuously monitor sleep activities (entry/exit of bed, movement, and
posture changes), vital signs (heart rate and respiration rate), and falls from bed in a
pervasive computing manner. The smart sensor senses bed vibrations generated by body
movements to characterize sleep activities and vital signs based on advanced signal
processing and machine learning methods. The device can provide information about
sleep patterns, generate real-time results, and support continuous sleep assessment and
health tracking. The novel method for detecting falls from bed has not been attempted
before and represents a life-changing for high-risk communities, such as seniors. Com-
prehensive tests and validations were conducted to evaluate system performances using
FDA approved and wearable devices. Our system has an accuracy of 99.5% detecting
on-bed (entries), 99.73% detecting off-bed (exits), 97.92% detecting movements on the
bed, 92.08% detecting posture changes, and 97% detecting falls from bed. The system
estimation of heart rate (HR) ranged ±2.41 beats-per-minute compared to Apple Watch
Series 4, while the respiration rate (RR) ranged ±0.89 respiration-per-minute compared
to an FDA (Food and Drug Administration) oximeter and a metronome.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Currently, 654 million people are 65 years and older worldwide [1], and around 47.8 million live in the United States [2].
ithin those people, nearly 26% live alone at home and 18% in senior healthcare facilities or similar according to U.S
ensus Bureau [2]. The fact, that seniors are living longer [2] and increasingly want to stay in senior care facilities or their
omes as they age, means more caregivers will be needed. In the U.S. alone, by 2030 the shortfall will be 151,000 paid
irect-care workers and 3.8 million unpaid family caregivers. Smart sensors imbued with artificial intelligence (AI) would
ssist nursing healthcare workers to improve the quality of care while reducing the cost. However, for this population,
here is a lack of contactless, non-invasive, and privacy-preserving solutions for monitoring sleep activities. Most of the
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monitoring solutions in the market are conceived to measure just vital signs (heart rate) with a wearable apparatus/gadget,
and those do not detect other important activities like lack of movement on the bed and falls from bed. Other devices
require the person’s actions, like pressing a button when a fall happens, but those cannot be activated if the person loses
consciousness. On the other hand, the use of cameras to monitor sleep generally raises privacy concerns.

When senior people require a sleep assessment, the standard technology is polysomnography (PSG) [3], which records
ultiple physiological signals and is generally performed in a sleep clinic. However, unless medically needed, this kind
f assessment is costly for families. Most commercial solutions include wrist devices that have been shown to estimate
octurnal sleep duration and sleep–wake patterns [4]. However, in the elderly population, the major concern is that they
ill forget to use the device. Moreover, some of these wearable sleep monitoring products require user intervention for

ndicating initial and final times of measurements (such as in smart watches like Samsung), or they only estimate partial
ital signs (such as FitBit, which does not consider respiration or blood pressure). Even more sophisticated wearable
evices like Philips Alice Pdx and Sleep Pace require the use of uncomfortable devices on the chest and eyes, which is
nconvenient for long term analysis [5,6]. Then a contactless and non-intrusive solution could be ideal for sleep monitoring
nd assessment. In the market, multiple contactless devices have been used for sleep monitoring, and they are usually
laced under mattresses [7–9]. However, they do not detect changes in body posture on the bed (like Beddit Sleep
onitoring), or calculate important vital signs such as blood pressure (like Early Sense), and are too expensive for family
se [8].
This paper introduces a novel health and sleep nursing assistant called ‘‘Helena’’ for real-time, contactless, and non-

nvasive monitoring that can be mounted on a bed frame to continuously monitor sleep activities (entry/exit of bed,
ovement, and posture changes) and vital signs (heart rate, respiration rate), and falls from bed. The technology includes
small yet smart vibration sensor that can be easily installed and a user-friendly graphic interface that can be paired with
mart mobile devices to monitor results through a software application. Vibration sensors have been widely used in smart
ome applications [10–13]. The smart sensor senses bed vibrations generated by body movements and sleep activities
nd then infers sleep activities and vital signs based on advanced signal processing and machine learning methods. The
ystem provides information about sleep patterns, generates real-time results, and supports continuous sleep assessment
nd health tracking.
The main contributions of our work are:

• A real-time, contactless, and non-invasive sleep monitoring system based on bed vibration, which allows estimation
of heart and respiration rates as well as sleep activities like on/off bed detection, movements, posture changes, and
for the first time falls from bed. The system allows sending alerts to smart devices when sudden changes occur,
for example, the person has too many or too few movements, a fall down happens, or the person entries/leaves
the bed. After the first 30 s of data (to construct the system’s sliding window), the proposed system can estimate
heart rate and respiration rate every 3 s, and detect movements, posture changes, and fall downs every 5 s, which
represents a reliable way to notify caregivers about events while care recipient is sleeping.

• Accurate, light and fast methods for heart and respiration rates, suitable for pervasive devices, that can be executed
in real-time on a single-board computer.

• First work to propose a method to detect and alert falls from bed using only vibration signals.
• First work to propose a method to detect movement and postures changes based only on the vibration signal

generated by the body on the bed.

In addition to the contributions, in this paper, we demonstrate the feasibility of the proposed system compared to other
similar products in the market (Section 2). We perform controlled and uncontrolled test with multiple people, types of
beds, types of houses, types of floors in the houses, etc; and we also demonstrate the usability of the system in a senior
healthcare facility (Section 6). We also discuss the drawbacks of the system and potential improvements for future work
(Section 7).

2. Related works

Sleep monitoring is extremely important, even a lifesaver, for people with undiscovered illness, which causes
espiration and heart failures [14,15]. The respiration status can be monitored by breathing apparatuses [16], while the
eart rate is typically measured by wearable devices [14]. However, those devices need body contact and are intrusive.
any people feel not comfortable wearing or forget to wear before sleep. Comparing with FDA approved wearable devices,
ur system can identify with high accuracy sleep activities and vital signs. Furthermore, to the best of our knowledge, this
s the first work that proposes a method to detect falls from bed using only vibration signals. There are multiple contact-
ased devices for sleep monitoring. For example, wearable devices like Apple Watch [17], Jawbone 3 [18], Basis Peak [19],

Fitbit Surge [20], and a number of other ‘‘smartwatch’’ devices that have been good in demonstrated their capabilities to
measure heart rate; however, they lack deep study of activities and patterns behaviors of the person during night and
require user intervention for correct performance.

Typically, contactless sleep sensing approaches are based on the assessment of body behaviors during sleep by
instrumenting sensors under the mattress [21]. Most of them are based on force sensors [22], load cells [23], multi-

channel infrared sensor-arrays [24], and pressure sensors [25]. Recently, new applications for smart environments are
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explored, such as ambient floor vibration for indoor person localization [13,26], bed vibration for heart beating and
breathing rate monitoring [22,27,28], etc. Besides, there has been rare work on sleep posture identification using body
vibration patterns during sleep. Multiple studies have been conducted in the past five years to extract heart rate and
respiration rate using vibration sensors. For example, Jia et al. [28] were the first to propose a bed-mounted geophone-
based heartbeat monitoring. In this study, authors use an SM-24 Geophone Element [29], an amplifier [30], and an
Analog-to-Digital Converter (ADC) placed under the mattress to extract the heartbeat of the person on the bed. In this
work, the authors used Sample Auto-correlation Function (ACF) [31] to extract periodicity from the time series and a
peak finding algorithm developed by Thomas C. O’Haver [32] to locate peaks in the sample ACF results. Those peaks
were considered the heartbeats. Even though the work has proved the concept and the feasibility of the approach, it
has been implemented in an ideal noise-free scenario for only research purposes, and it does not approach real-world
interference like washer machines, air conditioners, etc. In 2018, Li et al. [15] proposed a methodology to extract HR
and RR using a seismometer. For HR, the authors proposed a Local Maxima Statistics (LMS) method, and for RR, they
proposed an Instantaneous Property from the Oscillatory Analysis. Visual comparisons between results and peaks seem
to match, but no further error measurements were provided. Recently, multiple efforts have been made to apply machine
learning and deep learning techniques to vibration signals to estimate vital signs. In 2020, Park et al. [33] presented
a geophone-based sensing system for extracting electrocardiogram (ECG) patterns using heartbeat vibration through a
bed mattress. The signal is first filtered by passing the signal through a bandpass filter to keep frequencies between 5–
30 Hz. Then, the data passed on to a Bidirectional Long-Short Term Memory (Bi-LSTM) [34] deep learning model for ECG
waveform estimation. The deep learning model architecture in [33] is designed using two-stacked Bi-LSTMs and three fully
connected layers. Even though the results are promising, the approach is computational heavy to be applied in-situ inside
the sensor as the proposed approach. Other works have focused on estimating breathing states. Choudhary et al. [35]
presented a method to assess the human respiratory system by identifying degree-of-breathings, such as breathlessness,
normal breathing, and long breathing. The input data are SCG signals. The authors extracted 15 statistically significant
morphological features from the SCG cycle including heart-rate, beat energy, beat entropy, kurtosis [36], autocorrelation
feature [37], IM/IC amplitude [36], maximum spectral amplitude, and beat spectral centroid. Then, a Stacked Autoencoder
(SAE) deep learning architecture was employed for the identification of different respiratory-effort levels. The approach
is also promising but require post-processing of data and could be hard to implement in real-time scenarios

On the commercial side, under-mattress devices like Beddit [38] and Nokia Withings Sleep Tracking Pad [7] measure
leep time, heart and respiration rates, sleep cycles; however, these measurements are based on a whole night average
hat is shown the next day, which means there is not real-time information. EarlySense device [39] is the most near to
eal-time sleep monitoring and has been developed to provide continuous monitoring of heart rate, respiration rate, and
ed motion for patients in medical/surgical scenarios using a pressure sensor; however, the device is not too robust in
osture changes and fall from the bed, and it is very expensive.
We conduct an extensive product analysis has been carried out in order to highlight Helena’s innovations. Table 1 shows

he different features available in Helena and each wearable and contactless opponent product in the market. Compared
ith other wearable devices, Helena is the only one that allows real-time recognition of sleep activities like bed entry/exit,
ovements, and posture change. Table 1 shows: (1) contactless devices (superscript 1) vs. wearable devices (superscript 2);

2) price range ($ means < $150; $$ means between $150 and $500; $$$ means between $500 and $1000; $$$$ means >

$1000); (3) the different features: heart rate (HR), respiration rate (RR), entry/exit bed detection (Entr/Exit), movement
detection (Mov), posture change detection (Post), and fall down detection (Fall). Note also that features marked x• are
referred to estimations in real time. Also, the symbols ⋆ and ◦ in the Camera device means ‘‘non-privacy’’ and ‘‘features
under development’’ respectively.

To the best of our knowledge, Helena is the first vibration-based health and sleep nursing monitoring system that
estimates heart rate in respiration rate in real-time, and infers sleep activities like entry/exit of the bed, movements on
the bed, and changes of the body postures on the bed. Most importantly, Helena is the only solution that also detects
fall downs using vibration signals. This information allows sophisticated analysis of health and sleep, which can also be
reported according to the user’s preferences and alert configuration.

3. Overview

We use a smart sensor composed by a geophone (seismic sensor) [51,52], a digitizer board and a single-board computer
(Raspberry Pi 3B) [53]. It is shown in Fig. 1. The geophone detects the velocity of the movements. The digitizer transforms
analog vibration signals to digital that is read by the single-board computer. The single-board computer reads and
processes the signal to estimate the vital signs and on bed activities. After multiple tests, we decide that the sensor must
be installed in a range no larger than 40 centimeters from the heart location when the person lying down. The estimated
results are sent to the Cloud used the single-board computer WiFi. Also, it is in charge of sensing alert messages via email
or/and SMS and communicating with the smart assistant (Google Home or Amazon Echo).

Fig. 2 illustrates Helena architecture. The raw data sensed by the geophone is used to determine the bed status
(on/off/sitting). If the person is detected on the bed, Helena cleans the noise and estimates HR and RR if there are no
movements in the last 15 s. It is the time window used to calculate the vital signs with high accuracy. The vital signs are
estimated every 3 s. When a movement is detected, we evaluate three scenarios (posture change, off bed, and fall from
3
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Table 1
Comparison between Helena and wearable and contactless sleep monitoring devices.

Price Features

HR RR Entry/Exit Movement Posture Fall

Helena1 n/a x• x• x• x• x• x•

Zeo2 [40] $$$ x•

Apple Watch2 [17] $$ x• x
Jawbone2 [18] $ x x
Basis Peak2 [19] $ x
Microsoft band 2[41] $ x
FitBit2 [20] $$ x•

Philips Alice2 [42] $$$$ x x•

WatchPAT2 [43] $$$$ x• x• x
Cameras1⋆◦ [44,45] $$ x x x x
Sleep Cycle1 [46] $ x x
Emfit1 [9] $$ x x x x
Beddit1 [38] $$ x x x
Nokia Pad1 [7] $ x x
ResMed1 [47] $ x x
Smart Bedding1 [48] n/a x x x
Sleepace Pad1 [49] n/a x• x• x
EarlySense Live1 [50] $$ x• x• x x
EarlySense1 [8] $$$$ x• x• x x

Fig. 1. Helena unit prototype. The geophone senses the bed vibration signal, and the digitizer receives the analog information and creates a digital
representation which is processed by the single board computer.

bed). We use 5 s of data before and after the event to calculate posture change. For fall from the bed, we analyze if after
the movement there is an off-bed status. Then, the system performs a machine learning model to detect if the event is a
fall from the bed. Otherwise, an off-bed event is set.

Inside the Raspberry PI, we have configured automatic services to collect, read the data from the geophone, and save
the data inside the database (InfluxDB [54]). Another service that is running constantly, extracts the data from the database
and sends it to the algorithm section where the different algorithms are executed. We use sliding windows to process the
data on each algorithm. The reading of the data is done in real-time. The only delay is at the beginning of the readings,
where the algorithms are not providing heart rate, respiration rate, or any other information until they collect the first
30 s of data. After that, the algorithms utilize this sliding window second by second to calculate the values and show the
results. Note that there is no real delay, the system just does show results during the first 30 s of data collection. After
that, the system updates second by second by utilizing the old 29 s with the new 1 s from the sensor.

Additionally, we develop a real-time visualization tool based on InfluxDB [54] and Grafana [55]. InfluxDB is an open-
source time-series database for storing values associated with a time stamp. The raw data is stored in a local database, and
the results are sent to the Cloud. Grafana is used to create different dashboards such as raw data, bed status (on/off/sitting),
HR, RR, movement, posture change, and fall from the bed. Also, the system sends alerts and notifications configurable by
the user (email, SMS, or through the smart assistant). Alerts are generated when a person leaves the bed or if a fall is
identified.

4. Challenges

There are three main challenges to estimate sleep activities and vital signs using a vibration signal captured by a sensor
attached on the bed frame:

• Ambient noises: In vibration-based systems, the main issue is the unpredictable noise generated by natural and
human activities. Constant noise, like the one produced by an air-conditioner, washer/dryer, vacuum may affect the
4
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Fig. 2. Helena architecture.

data quality and vital signs estimation. It is a challenge to detect and eliminate the noises produced by the different
machines while preserving the signal produced by the heartbeat. Because Helena is designed for monitoring a single
person, additional people or pets in bed may general noise.

• Event recognition: Vibration-based systems are highly sensitive and can detect other activities besides the heartbeat.
A major challenge is to distinguish and classify the relevant events for estimating sleep activities, vital signs, and fall
downs, and discard other non-related events.

• Heartbeat estimation: The heartbeat signal received by the sensor varies depending on multiple factors like height
and type of mattress, sensor location, types of beds. Because heartbeat recognition is the base for many of our
algorithms, recognizing heartbeats in different environments/people/setups is a major challenge of the proposed
development.

. Algorithm and system design

.1. Signal enhancing

Since our goal is to realize daily sleep monitoring, the proposed system should be robust to different environments.
esides the random noise suppression, an adaptive machine vibration elimination is also required in the home environ-
ent to handle the noises from home appliances, such as AC (air conditioner), washer/dryer, vacuum, and so on. Based on

he geophone with a 100 Hz sampling rate, the available frequency range is 0∼50 Hz, according to the Nyquist sampling
heorem. A spectrum scanning method is first applied to remove the machine noises in the environment. We apply notch
ilters to suppress the noise components with iso-dominant-frequencies. For HR/RR estimation, because the typical HR
s between 40 bpm (beat per minute) and 150 bpm and RR is between 12 rpm (respiration per minute) and 25 rpm,
hich means the target HR/RR should include 0.2 Hz to 2.5 Hz, only a small frequency range is needed. Thus, we apply
bandpass filter with 0.1 Hz low-cut frequency and 8 Hz high-cut frequency to extract target vibration signals. After the
rocess, the machine noise is removed, and the signal retains the vibration signatures.

.2. On/off-bed — bed exits and entrances

Knowing if the person is effectively lying down on the bed is crucial for other system estimation modules. We propose
multiple feature fusion(MFF) method, that consists of different metrics to estimate if the person has entered or exited the
ed. We use a fusion of Spectral Entropy (G), Kurtosis (U) and Teager Energy Operator (T) to estimate the real energy when
he person is on the bed. The SE treats the signal’s normalized power distribution in the frequency domain as a probability
istribution and calculates the Shannon entropy of it. The Shannon entropy in this context is the spectral entropy of the
5
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Fig. 3. Data-fusion energy based entry/exit bed detection (bottom), which is obtained by MFF. Note that the unit data generated by the geophone
top) is voltage.

ignal. For a signal x(n), the power spectrum is S(m) = |X(m)|2, where X(m) is the discrete Fourier transform of x(n). The
robability distribution P(m) is then P(m) =

S(m)∑
S(i) . Then, the spectral entropy is estimated as

G = −

N∑
m=1

P(m) log2 P(m). (1)

Kurtosis is the fourth standardized moment, defined as:

U[X] = E
[( X−µ

σ

)4]
=

µ4
σ4 =

E[(X−µ)4]

(E[(X−µ)2])2
, (2)

where µ is the fourth central moment and σ is the standard deviation. Finally, The T can be driven from a second-order
differential equation [56]. The total energy of oscillation (i.e., the sum of kinetic and potential energies) can be obtained
from the following equation

T =
1
2
kx2 +

1
2
mx2, (3)

where m is the mass of the oscillating body and k is the spring constant. Results can be seen in Fig. 3. It is possible to see
the decreasing of the total fused energy when the person is on the bed.

The data-fusion energy (DFE) shown in Fig. 3 based on MFF can be obtained in the following way. Assume the number
of measurement in an analysis window is I , the value DFEi of the i measurement is

MFFi = Giα + Uiβ + Tiγ , i = 1..I, (4)

where α, β , and γ are the corresponding coefficients of G, U and T, respectively. Therefore, the DFEI of the analysis window
I can be obtained using the following expression:

DFEI
∆
=

⎡⎢⎢⎢⎣
DFE1
DFE2

.

.

DFEI

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
G1
G2
.

.

GI

⎤⎥⎥⎥⎦α +

⎡⎢⎢⎢⎣
U1
U2
.

.

UI

⎤⎥⎥⎥⎦β +

⎡⎢⎢⎢⎣
T1
T2
.

.

TI

⎤⎥⎥⎥⎦ γ . (5)

Note that the DFE is obtained not based on a single point but a relatively long time interval to assure a smooth result.
The DFE is defined between 0 and 100 to keep the simplicity. DFE can be viewed as the combination of ‘‘real’’ energy
measurements of the person on bed. When DFE is below a established threshold, we can consider that the person is on
bed. For our algorithm, after multiple experiments, we selected the value of the threshold is 12.

5.3. Movements and posture change

To detect movements, we first use the MFF method to determine if the person has entered the bed. After that, we

observe that the body movement generates a strong signal (Fig. 6 in our previous work [15] while the respiration and

6
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Fig. 4. Five seconds signal from four different postures.

heartbeat show an amplitude about 105. Thus, based on the dramatic energy change, we can recognize the body movement
sing a local thresholding method:

Trm =

{
1 if s(t) ⩾ λmax(s(z)), z ∈ (t − τ , t)
0 otherwise, (6)

where, s(t) is the signal in time t , λ is a threshold coefficient and τ is the time lag.
Based on the on bed movement detection results, we develop a posture change detection method because not all

body movements mean sleep posture changes. For posture change detection, we analyze 5 s signal before and after the
movement to compare the similarity between them. We calculate the similarity average of four metrics – the Spectral
Entropy, Kurtosis, TEO, and Power Spectral Density (PSD) – characterized by

sim = sumi<4
i=0(1 − abs(Ai − Bi)/((Ai − Bi)/2)) (7)

where, Ai is the metric i value for the signal after the movement, and Bi corresponds the metric i value for the signal
before the movement. After several tests, a threshold of sim < 0.85 is established to identify if there is a posture change.
Fig. 4 shows the signals of different postures for one person.

5.4. HR/RR estimation

Estimating hearth rate (HR), measured in BPMh directly from the data spectrum [28] is not accurate because the
heartbeat waveform is not strictly periodical in reality as it can be seen in Fig. 5.

The local maxima search method may fail (i.e., generate unreasonable results) when there are noises and other
interference. To improve HR estimation stability, we develop an envelope based HR estimation method. The envelope
is a curve such that at each point it touches tangentially the signal. Fig. 5 shows an example of the envelope obtained to
estimate in HR. The parametric equations of the envelope are given implicitly as U(x, u, C) = 0 and U ′

C (x, u, C) = 0. Once
the envelope is obtained, the peaks can be used to estimate the HR. To solve instabilities, a novel empirical truncated
statistics analysis method is proposed to estimate HR. When local maxima of envelope are obtained, there are falsely
picked peaks and some missing peaks. Those falsely picked peaks result in smaller period estimation, whereas the missed
peaks lead to larger estimation results. Here, X is the interval between two sequential picked peaks. The heartbeat period
within (t −

Ih
2 , t +

Ih
2 ) is estimated as a truncated average:

E(X |F−1(a) < X ⩽ F−1(b)) =

∫ b
a xg(x)dx

F (b) − F (a)
, (8)

where, g(x) = f (x) for F−1(a) < x ⩽ F−1(b);
g(x) = 0, everywhere else;

F−1(p) = inf{x : F (x) ⩾ p}.

The lower and upper bounds (a and b) are determined based on the local maxima detection performance. In our
applications, 0.1 and 0.9 are chosen for a and b, respectively.

Commodity seismometer is insensitive to lower frequency measurements (usually lower than 0.3 Hz) [27,28], thus
the respiratory rate BPMr cannot be directly observed from seismic data. Previously, an amplitude-modulation approach
is proposed to use the envelope to estimate carrier frequency [28]. However, the amplitude modulation of the recorded
seismic signal is not stable. For that reason, we propose a novel technique to obtain the envelope. We use the HR peaks
detected to generate the respiratory modulation signal by extrapolating them. Then we obtain the envelope of the signal
and count the peaks to estimate the respiratory rate. Fig. 5 shows the envelope generated by the proposed method.

5.5. Fall from bed

To identify ‘‘fall from bed’’, we propose to use a machine learning-based approach. Based on a supervised machine
learning algorithm, Support Vector Machine (SVM) [57], data are transformed using a kernel to find the optimal boundary
7
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Fig. 5. Heart signal. First and second local maxima estimation from envelope to estimate HR and RR.

Fig. 6. Bed vibration signals for different events.

between the different classes. SVM and its derivatives have been widely used in biomedical engineering [13,58] because
it is efficient and easy to implement on embedded devices. Before applying the machine learning method, we identify
whether the detected event is a candidate to be a fall from the bed. In the stage of ‘‘falling from bed’’, the person should be
laying or sitting on-bed, and then an event needs to be detected. When an off-bed is identified after the event, it becomes
a candidate to be a fall from the bed. At that moment, the features are extracted and classified by the SVM to identify if
the event is a fall from bed or another movement. All events used during training and tests are shown in Fig. 6.

5.5.1. Feature extraction
We compute features in the time and frequency domain. The signal events are normalized to get similar features for

each type of event. The normalization is done by dividing the event by the energy average of its signal, where the energy
is defined as

E =

N∑
n=0

|s(n)|2. (9)

For fall down detection, we initially utilize multiple features in the time and frequency domain like for example entropy
and location of maximum peaks for time domain and centroid and number of peaks in the frequency domain. After careful
evaluation of the parameters in a data-driven process, we realize that the most contributing features are related to signal
amplitude, event duration, amount of sub-events, and the last 20 peak information in the time domain due to nature of
the fall signal. Fig. 7(left) shows the time domain features. In the frequency domain, we select Power Spectral Density
(PSD) of the vibration signals, which exposes the power distribution for different frequencies. If si represents the signals,
hen the PSD can be defined as

PSDi = 10log10
abs(FFT(si))2

fs ∗ n
(10)

here fs is the sampling frequency, n is the number of samples of received signal si and FFT(·) is the Fast Fourier Transform
peration. Fig. 7(right) shows the PSD feature used as a part of the input.

.5.2. Selection
For experimental purposes, we generate 480 simulated falls from the bed. To have plenty of variety of signals, the

imulated falls are performed by 3 people in 4 different bed falling 20 times for each bed-side. To choose the correct
lassifier that obtains high levels of accuracy and to have the ability to adapt to the limited computing resources of the
omputer board, we evaluate the accuracy and run-time of three different classifiers using the 480 falls from the bed.
he tested classifiers are Gaussian Process (GP), K-Nearest Neighbors (KNN), and a one-class SVM. The data is split into
0 percent for training and 20 percent for testing. To test the classifiers, we also use other non-fall events like people
hanging position on the bed and people standing up from the bed. In order to get this null-class data, we generate 150
8
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Fig. 7. Time and frequency domain features for fall from bed classification.

Fig. 8. Receiver Operating Characteristic (ROC) of the cross-validation procedure using 10 folds.

events of changing positions in bed and 150 events of standing up from bed from 5 different people. The process was
conducted on 4 different Raspberry Pis for each classifier. The results are shown in Table 2.

All classifiers have an acceptable level of accuracy. Even though KNN has the highest accuracy and recall, there is no
big difference between SVM and GP. On the other hand, all training times are acceptable because they are executed just
one time. However, SVM outperforms the classification run-time. The run-time increases 3.2X times when GP classifier
is used, and 25.45X times using KNN. Then, we selected SVM as a classification as the classifier model.

5.5.3. Validation
The k-fold cross-validation procedure is applied to evaluate the classification model. We use k-fold to estimate how the

model is expected to perform when it makes predictions on data not used during the training of the model. The procedure
splits the data into k groups, and for each group, it (i) takes one group as a test data set, (ii) takes the remaining groups
as a training data set, (iii) fits and evaluates the model, and (iv) retains the evaluation score. We select 10-folds to cross-
validate the model. We use AUC (Area Under the Curve) ROC (Receiver Operating Characteristics) to check and visualize
the performance of our classification problem. ROC is a probability curve, and AUC represents the degree or measure of
separability. They tell how much the model is capable of distinguishing between classes. An excellent model has an AUC
near 100, which means it has a good measure of separability. Fig. 8 shows the AUC for all folds. The AUC average is 89.92,
which is an acceptable measurement.

6. Experiments and evaluations

We performed three types of experiments to validate the bed system. The first one was done in a lab environment
to set up parameters, find issues, and validate the system with different people. Then, we carried out a test in different
environments outside the lab to test different beds, noise levels, and to validate the HR results comparing with an FDA
approved device. Finally, we set up two units in a senior assisted living facility in Loganville, GA to test the system with

senior people, crowd environments, and also to get feedback from users, relatives, and nurses.

9
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Table 2
Classifiers performance on ‘‘fall from bed" detection. Times are calculated from the average of four
Raspberry Pi. Acc (accuracy), Pre (precision), Rec (recall), F1 (F1 score).
Algorithm Acc Pre Rec F1 Training time (s) Classification time (s)

SVM 90.92 0.69 0.81 0.75 26.146 0.472
KNN 91.33 0.69 0.87 0.77 10.340 12.023
GP 87.83 0.62 0.68 0.65 35.237 2.315

Table 3
Matrix confusion for ‘‘bed status" experiment.
Ground truth Evaluation

On-bed Sitting Off-Bed Ac Pr Re F1

On-bed 120 9 0 0.98 0.93 1.00 0.96
Sitting 0 111 0 0.98 1.00 0.93 0.96
Off-bed 0 0 120 1.00 1.00 1.00 1.00

Avg. 0.98 0.98 0.98 0.97

Fig. 9. HR average and mean absolute error from in-lab experiment.

6.1. In-lab experiment

We carried out the first experiment with 10 participants (6 males and 4 females) from our lab and collaborators. It
was done in a controlled environment with the same bed and similar background noise. This experiment was done to
tune some algorithm parameters and validate the accuracy of on-bed, off-bed, HR, RR, movement, and posture change.
For comparison purposes, we used a commercial fingertip pulse oximeter, Zorvo, to obtain continuous readings of the
vital signs (HR and RR). The experiment was set up for 18 min per participant, and it was distributed as follows (i) 3 min
on-bed, off-bed, and sitting on the bed (ii) 5 min for HR, (iii) 2 min for RR, (iv) 2 min for movements, and (v) 6 min for
posture change.

6.1.1. On-bed, off-bed and sitting experiment
When the person is on-bed, the system starts the algorithms to calculate the vital signs. We collected 36-bed status

from each participant, 12 for each type (on-bed, off-bed, sitting). The participants change the status every 5 s according
to our directions. In this experiment, the system was set up to detect bed status every 3 s. Table 3 shows the results
of the ‘‘bed status’’ test. The method used to calculate the bed status proved to be robust and reliable according to the
low error level. The method got a perfect score detecting off-bed because the data-fusion level is high when there is
not a periodical signal detected. However, the system detected 9 false on-bed alarms when the participants were seated.
Interestingly, after carefully analyzing these specific cases we found that when a person sits at a distance less than 30
centimeters from the sensor, it can detect a faint heartbeat signal that has high auto-correlation levels. We improved the
accuracy by analyzing the variability between HR peaks, where high variability implies sitting. In some cases, the system
can estimate HR if the person is next to the sensor.

6.1.2. Heart rate experiment
The 5 min HR experiment was divided into two blocks. The first is called ‘‘resting mode’’ where the participant lays

on the bed for 3 min in normal condition. The second, ‘‘active mode’’, where the participant needs to do exercise for
10
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Fig. 10. HR visual comparison between Helena and an oximeter. (a) Before exercising. (b) After exercising.

Fig. 11. RR results from controlled respiration using a metronome using a frequency of 20 breath per minute.

min before laying on-bed another 2 min to collect high HR and analyze the variation when the person begins to relax.
uring the experiment, our system was configured to estimate the HR at the same frequency as the oximeter (every 5 s).
he error was calculated with 36 readings in rest mode and 24 for the active mode per participant. Fig. 9 shows the HR
verage and the errors obtained in both modes. The estimated average error was 2.35 bpm (beats per minute) for the
esting mode and 2.08 bpm for the active mode. The error results were also affected by the error added for the oximeter
hat is established in 2 bpm in its description. For example, the maximum error obtained during the experiment was 3.43
pm, but after calculating it manually using the raw data, the real error was 1.26 bpm.
Fig. 10a shows the estimated HRs from the two devices on resting mode. Here, an error from the oximeter can be

ppreciated at the time 7:35:00 where there is a drop of 10 bpm, and it is recovered after two readings. Fig. 10b shows
he HR behavior during the recovery period of the participant after exercising. Both results show a drop of 20 bpm in the
irst minute, which is considered normal.

.1.3. Respiration rate experiment
We used a metronome to validate our respiration rate estimation. The metronome is a generally accepted approach

o collect ground truth breathing data in the research community [59,60]. Even though people are forced to breathe
rtificially using the metronome, we could estimate the accuracy of our method. The metronome was set to sound every
hree seconds to get a RR of 20 rpm. Forty readings were collected per participant during the two minutes test. Fig. 11
hows the results obtained for each person and the metronome baseline. The average error was 0.52 rpm validating the
esults obtained in the first experiment. During the HR experiment, the RR was also estimated by both, our system and the
ximeter. The purpose was to analyze spontaneous breathing. We obtained 36 and 24 measurement estimations during
esting and active mode respectively from each person. The results from the two modes are shown in Fig. 12, having a
ean error of 1.56 rpm during the resting mode and 0.61 rpm during the active mode. It is noteworthy that the error

n the active mode is smaller because the deep breathing generates a marked difference between the inhalation and
xhalation phases improving the envelope calculation.

.1.4. Movements
The objective of the experiment is body movement detection. However, the experiment was designed to collect data

hat will be used to develop future features such as the movement location. During it, we asked the participants to
11
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Fig. 12. Results and errors from spontaneous RR calculated by Helena.

Fig. 13. Posture change transition error. B(Back), L(Left), R(Right), C(Chest).

Table 4
Matrix confusion for posture change detection.
To Recognized as Eval

Change No change Acc

Back 110 10 91.67
Chest 115 5 95.83
Right 108 12 90.00
Left 105 15 87.50

Avg. 91.25

move different parts of their bodies one at a time every 5 s. The body part used were the left hand, right hand, left leg,
right leg, head, and shoulders. We told the participant which part he/she needed to move according to a pre-established
pattern. A total of 240 events were used for calculating false negatives and accuracy. The movements were classified into
two groups, ‘‘upper movements’’ (head, arms, and hands) and ‘‘lower movements’’ (legs and feet). The system did not
detect 5 movements from the 240 generated, obtaining an accuracy of 97.92%. All of these 5 movements were from lower
movements specifically from the feet located outside the bed generating a lower magnitude lower than any on-bed event.

6.1.5. Posture changes
We organized a pattern where the participant had to change to one position from the other three positions. For

xample, starting from ‘‘left’’, move to ‘‘back’’, then ‘‘chest’’, ‘‘back’’, ‘‘right’’, ‘‘back’’, and so on. We collected 48 posture
hanges from each participant. The results obtained after the evaluation are presented in Table 4. A total of 438 posture
hanges were successfully recognized getting an accuracy of 91.25%. Fig. 13 shows the posture change failures from one
osition to another. As signals from the ‘‘back’’ and ‘‘left’’ have similar characteristics, the posture changes with the highest
rror were from ‘‘back’’ to the ‘‘left’’ and vice versa. On the other hand, ‘‘chest’’ and ‘‘back’’ posture signals are very
ifferent, which leads to fewer errors from ‘‘back’’ to ‘‘chest’’ and vice versa with just one failure.

.2. Outside experiment

We set up the experiment in 13 different homes with varied environments, beds, and background noise. We got
he help from 25 participants. Specifications of the different mattress, size, materials, and distance between floor and
12
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the parts of the system are presented. The highlights are

RR False
On-bed

False
Off-bed

Posture
change Acc

Fall
Acc

21.3rpm 0 0 92.86 100
22.2rpm 0 0 90.54 100

22.2rpm 0 1 – 100
18.1rpm 0 0 – 100
20.6rpm 0 0 94.44 75
16.4rpm 0 0 – 100

20.1rpm 0 0 87.30 100

19.3rpm 0 0 – 100

19.5rpm 0 0 – 100

20.0rpm 3 0 – 100
16.7rpm 1 0 – 100
20.9rpm 0 0 94.34 100

16.2rpm 0 0 – 100
17.4rpm 0 0 92.31 100
19.3rpm 0 0 93.33 100

20.1rpm 0 0 – 100

19.7rpm 0 2 – 75
19.1rpm 0 0 – 100

20.4rpm 0 0 – 100

21.2rpm 0 0 91.49 100

21.1rpm 0 0 – 100

16.2rpm 0 0 – 75

22.0rpm 1 0 – 100

18.8rpm 0 0 – 100
16.7rpm 0 0 – 100

Min 16.2
Max 22.2 Total 5 Total 4 Avg. 92.08 Avg. 97

13
Table 5
Outside test details and results. Relevant information from the participants, environments, and beds is shown. The results obtained in each of
summarized in the last row.
# House Gender Age Weight Location Room

location
Floor type
under carpet

Bed
frame

Mattress
material

Mattress
Height

Ave-HR ± error

1 Male 39 196 Bogart 2 Floor Wood No Innerspring 14.5 66bpm ± 1.32
2 1 Female 37 154 Bogart 2 Floor Wood No Memory foam 11.5 72bpm ± 1.59

3 Male 21 121 Bogart 2 Floor Wood No Memory foam 8 64bpm ± 2.08
4 Male 23 147 Bogart 2 Floor Wood No Memory foam 8 58bpm ± 2.13
5 Female 62 114 Bogart 1 Floor Concrete No Innerspring 10 54bpm ± 1.27
6

2

Male 19 136 Bogart 1 Floor Concrete No Memory foam 8 76bpm ± 2.68

7 3 Male 33 172 Athens 4 Floor Wood Yes Hybrid 11 58bpm ± 1.97

8 4 Female 24 127 Athens 2 Floor Concrete Yes Innerspring 9 63bpm ± 1.57

9 5 Male 22 143 Athens 2 Floor Wood Yes Innerspring 9 67bpm ± 2.73

10 Male 19 204 Alpharetta 2 Floor Wood Yes Hybrid 11 78bpm ± 1.68
11 Male 24 167 Alpharetta 2 Floor Wood Yes Hybrid 11 54bpm ± 1.58
12

6
Male 51 154 Alpharetta 2 Floor Wood Yes Hybrid 11 77bpm ± 5.28

13 Male 49 200 Alpharetta 2 Floor Wood Yes Memory foam 10 83bpm ± 1.91
14 Male 24 183 Alpharetta 1 Floor Concrete Yes Memory foam 10 63bpm ± 1.61
15

7
Female 64 128 Alpharetta 1 Floor Concrete Yes Memory foam 10 55bpm ± 1.29

16 8 Male 41 205 Watkinsville 1 Floor Wood No Memory foam 10 69bpm ± 1.95

17 Male 25 161 Roswell 3 Floor Wood Yes Hybrid 14.5 81bpm ± 5.18
18 9 Female 27 144 Roswell 3 Floor Wood Yes Hybrid 14.5 74bpm ± 6.30

19 Male 33 231 Sandy
Springs

2 Floor Wood Yes Memory foam 7 81bpm ± 1.83

20 Female 18 143 Sandy
Springs

2 Floor Wood Yes Memory foam 7 72bpm ± 2.18

21
10

Female 59 169 Sandy
Springs

2 Floor Wood No Memory foam 7 63bpm ± 1.59

22 11 Male 34 139 Northcross 2 Floor Wood Yes Hybrid 11.5 64bpm ± 3.80

23 12 Male 32 141 Dunwoody 9 Floor Concrete Yes Hybrid 11.5 78bpm ± 3.24

24 Female 44 196 Marietta 2 Floor Wood Yes Innerspring 9.5 75bpm ± 1.63
25 13 Female 58 146 Marietta 2 Floor Wood Yes Innerspring 9.5 61bpm ± 1.77

Summary Males 16
Females 9

Min 18
Max 64

Min 112
Max 231 Cities 9 Levels 5 Types 2 Yes 17

No 8

Innerspring 6 Min 7
Max 14.5

HR Avg. 68.24
Error Avg. 2.41Memory 11

Hybrid 8
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Table 6
HR mean absolute error from Helena and abnormal peaks during estimations.
Average Mean absolute Abnormal peaks from

Time Error±STD AppleWatch Helena

1 min 4.28 ± 2.80 bpm 0.059 0
3 min 4.01 ± 2.53 bpm 0.183 0
5 min 3.43 ± 2.23 bpm 0.302 0
10 min 2.89 ± 2.06 bpm 0.611 0
15 min 2.41 ± 1.88 bpm 0.926 0
30 min 1.76 ± 1.56 bpm 1.866 0
1 h 1.41 ± 0.70 bpm 3.384 0

boxes(frames) of the 25 beds are listed in Table 5. The experiment was established for 5 continuous days. Due to some
limitation with the number of units and the FDA devices used to validate our results, we experimented during 4 different
weeks.

6.2.1. On-bed, off-bed and sitting experiment
We established windows for analyzing on and off-bed. The off-bed window was set between 9 am and 5 pm.

articipants confirmed it was their time to be out of their homes. For the on-bed hours, a window was established between
pm and 6 am. A limitation of this experiment is that we could not perform sitting validations. However, we analyzed

he raw data and the HR and RR results. We did not find any HR and RR calculation outside those expected. We took as
xpected values for HR between 40 and 140 and respiration between 12 and 25. Also, we considered expected continuous
ariations between estimations not greater than 8 bpm for HR and 6 for rpm for RR. For example, the HR values of a false
n-bed can vary from 62 to 78 bpm in 5 s and for RR from 18 to 26 rpm. We did not find unexpected values during the
25 nights. We confirmed that no HR or RR was estimated while the participants were sitting on the bed. Table 5 shows
n two columns the false positives detected per house during the test. The false on-bed column reflects the false positives
n-bed or the times when the system detected a person on-bed during off-bed hours. During the entire experiment, five
alse on-bed detections were presented in two different houses. In house number 6, four false on-bed were detected with
duration smaller than 5 min. We analyzed the signal and realized that the environment was very noisy due to the house
onstruction. Three false on-bed detections occurred in the bed next to the laundry room. During this time we found two
ixed signals that correlated as well as HR signal. In another hand, the false on-bed detection on house number 12 was
nalyzed, and a cardiac signal was found with an HR average of 120 bpm. We found it was from the participant’s dog who
sually sleeps at the bottom of the bed. The system was able to detect and calculate the dog’s HR. The accuracy calculated
er day and hour would be 96% and 99.5% respectively. The false off-bed column shows the false exits from the bed. It
appens when the system cannot detect the heartbeat due to poor posture and/or a thick object used between the body
nd the mattress. The accuracy calculated per day and per hour was 97.6% and 99.73%. The solution proposed for both
alse detection is to recognize a big event before ‘‘bed status’’ change. These events are induced when the person sitting,
ying down, leaving the bed, or changing positions. With this approach, the eight detections in total can be reduced to
ne.

.2.2. Heart and respiration rate experiment
We used an FDA class 2 medical device, Apple Watch Series 4 [61], to validate the accuracy of our HR method. The

pple Watch provides HR continuous reading in a range between 3 to 10 s. One of the limitations is the battery life since
t only allows collecting around 5 h of continuous HR. Participants used an AppleWatch for 5 days at bedtime. We selected
t because it is one of the most accurate devices on the market calculating HR with an average error of 2.99 bpm [62].
ppleWatch incorporates some errors during the HR estimation where the changes between 2 consecutive readings are
arger than 25 bpm, and it is not normal even is the person is having a panic attack [63]. Fig. 14 shows the graphic results
etween AppleWatch and our system in different tests. In both figures, our method follows the pattern established by
he AppleWatch. Also, the errors from the AppleWatch can be observed. The largest difference during the test is shown
t 2:40 am in Fig. 14a. We checked other indicators at the same time, and we observed that in these 12 min, several
ovements were detected. We can infer that the person was awake at this time. In the same figure, at 3:20 am, there
re 10 min of missing results by our system because it detected off-bed status. It was confirmed by the participant.
Table 6 summarizes the results of the entire HR experiment, showing the mean absolute error (MAE) and the peaks

ntroduced by the AppleWatch. Note that the error decreases according to the growth of the time window, and the
ppleWatch added more than three errors in one hour. We set 15 min windows for comparison due to many commercial
evices calculate HR at this frequency. The MAE of the system is 2.41 bpm even when the AppleWatch incorporates during
hat time an unreliable peak of data. Devices on the market calculate HR with an average error between 2 and 5 bpm.
he error obtained in our experiment shows that our system is within the confidence range estimating HR. Table 7 shows
ranking summary of the MAE using 15 min window. The four best results showed an average error of less than 1.6
pm. According to Table 5, the common variable to obtain these results is the type of mattress, in this case innerspring.

he same variable affects the system performance because in the highest four errors detected, the type of mattresses was

14
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Fig. 14. HR comparison between Apple Watch Version 4 and Helena. (a) Participant 17. (b) Participant 20.

Table 7
Mean absolute error rank of HR validation.
Rank Participant Mean absolute Abnormal peaks from

Error±STD AppleWatch Helena

1 C5 1.27 ± 1.29 0.544 0
2 C15 1.29 ± 1.82 0.742 0
3 C1 1.32 ± 1.59 1.032 0
4 C8 1.57 ± 1.26 0.786 0

22 C22 3.80 ± 3.40 1.143 0
23 C17 5.18 ± 3.47 0.887 0
24 C12 5.28 ± 3.90 0.786 0
25 C18 6.30 ± 4.73 1.446 0

a hybrid. The hybrid bed has two layers innerspring on the bottom and foam on the top. After checking the signal, we
noted that the bed material affects the energy signal. However, there are some exceptions as participants 7, 10 and 11. It
is because two other variables influence the energy signal such as person weight and mattress height. In those cases, the
participants obtained a lower error than the average due to their weight and heartbeat strength. Even when participant
18 is an overweight person, the error obtained in this experiment was the highest because the participant’s bed is thicker.

Validating the respiration rate (RR) was more difficult. Affordable on-the-market devices for monitoring RR have low
ccuracy and are difficult to wear overnight. For this reason, we only were able to evaluate the results based on the
‘range of confidence’’ and the ‘‘acceptable variability’’. The ‘‘range of confidence’’ was established between 13 and 25
pm as we worked only with healthy participants. The ‘‘acceptable variability’’ means no abrupt changes between one
R estimation and another in a shorter time. None of the participants were outside of the ‘‘range of confidence’’, and the
ighest variability was obtained by participant 18, with 4 rpm different between two consecutive measurements. Table 5
hows the RR average from each participant.

.2.3. Posture change and movement experiment
We obtained permission from 8 participants to install infrared cameras with motion detection [64]. Fig. 15 shows the

amera used and images from the video recorded. The cameras were configured to record video during bedtime between
pm to 6 am. Additionally, cam alerts were activated to record 12 s of video after movement detection. The alerts helped
s to validate true positives, false positives, and true negatives. In each alert, we verified if there was a posture change or
ot contrasting it with the results of our system. Additionally, we verified the continuous video recorded in cases where
ur system registered a posture change, but the alert was not emitted by the camera. This specific case occurred when
he person made two continuous posture changes and the alert was activated just the first time.
15
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Fig. 15. Posture change validation. Camera used in the validation and images taken during the experiment. (a) The infrared camera with motion
detection. (b) Lady sleeping on the right. (c) Second lady sleeping on the back. (d) Man sleeping on the left.

Table 8
Posture change validation results.
Parti Event detected by the camera Real posture changes Changes detected Acc

Yes No

C1 60 56 52 4 92.86
C2 76 74 67 7 90.54
C5 54 54 51 3 94.44
C7 69 63 55 8 87.30
C12 57 53 50 3 94.34
C14 66 65 60 5 92.31
C15 62 60 56 4 93.33
C22 51 47 43 4 91.49

Avg. 92.08

The test results are shown in Table 8. We noted that the failures produced by the system occurred in 76.31% of cases
when the posture change was from left to back or vice versa, similar to results registered in the laboratory test. The
average accuracy for the spontaneous posture change is 92.08% which validates results obtained in the simulated posture
change test performed in the laboratory. We were unable to perform a quantitative evaluation of movements during the
bedtime windows because slight movements detected by the system are not detected by the camera. However, our system
detected movements in all alerts not classified as a posture change.

6.2.4. Fall-down
Because falls from bed are not common events to be validated in a real environment, we performed simulated falls

when we installed the sensors in different environments. Two falls on each bedside were simulated on each bed. Only 3
events were not classified as a fall from bed having an accuracy of 97%. Throughout the experiment, we did not detect
any false fall from the bed. Even when the method was trained with different fall positions, people, environments, and
beds, the data were simulated falls. For this reason, we cannot guarantee the same level of accuracy in spontaneous falls.
However, we plan to integrate another sensor installed on the floor to combine the events that occur in the bed and on
the floor, to provide a higher level of confidence [13].

6.3. Senior care center test

Because two previous tests are performed with healthy people and under 60 years, we decided to perform an additional
test with senior people. Two units were installed for two days in the Magnolia Senior Care facility located in the city of
Loganville GA. We received approval from the manager, the participants, and their families. The participants were 87 years
old and 147 pounds gentleman, and a 74 years old and 132 pounds lady. The on-bed, off-bed and sitting status, were
confirmed by the nurses. The HB and RR were monitored in real-time from our central dashboard. The values of both HR
and RR were normal throughout the process. No false fall from bed was detected. We could not perform posture change
or movement validations. Fig. 16 shows the monitoring dashboard during part of the process, which allows seeing the
report in real-time showing the last 5 min results and also to check historical results.

7. Discussion

In this section, we explore the drawbacks of the proposed system and the potential solutions to those drawbacks. We
plan to follow the presented recommendation to improve the system and potentially make it commercially available.
16
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Fig. 16. System results dashboard from one participant at Magnolia Senior Care Facility.

7.1. Drawbacks

Several aspects need to be address to ensure a reliable and accurate system as Helena, especially aspects related to
environment interference.

7.1.1. Location of the sensor
In the Helena system, the sensor must be placed within 40 centimeters from the heart location when the person

lays down on the bed. This is a requirement mostly because the signal degrades due to multiple materials on the bed.
We conducted tests on king, queen, and single beds, and as long as the sensor is placed correctly (<40 cm of the heart
ocation), the application works as expected. However, in a king bed, if the sensor is placed on one side and the person
leeps on the other side, the signal is not going to provide the expected results, the application triggers multiple false
larms, and the measurement of heart and respiration are not correct. This is similar to other commercial sleep pads, such
s the Nokia Sleep Pad [7], which has to be placed under the back of the person.

.1.2. Number of people in bed at the same time
The design of the Helena system was conceived to work on a bed with only one occupant. Currently, the system does

ot manage the separation of the signals from multiple people. To address this issue, the authors need to add more than
ne sensor to the system and apply a blind separation technique to differentiate the vibration signal from different people.
his study has been reserved for future work.

.1.3. Sensitivity to external artifacts
During the initial tests on uncontrolled environments, we realized the multiple external artifacts that can interfere

ith the vibration signal. One of the most common ones is the Air Conditioner (AC) vibration. To solve this problem,
e applied a narrow-band notch filter as explained in Section 5.1. The filter works as expected because the vibration
f the AC is constant in frequency. However, there are other artifacts like vibrations from washers and dryers that are
ore challenged due to the variant nature of the washer and dryer cycles. Those interferences were also reported in the
xperiment section. For future work, we plan to conduct a deep study to design an advanced adapted filter that allows us
o mitigate the effect of these variant artifacts. Furthermore, we are going to study the possibility to incorporate a light
earning process for filter adaptation.

.2. Future improvements

In Section 5.3, we explain how we conduct the movement and posture change detection. The posture change was
eferred to as the change in the position of the body, but not consider specifically which position is the detected one.
nderstanding which the current posture of the person in bed could potentially provide information to study medical
oncerns such as quality of sleep, apnea, breathing disorders, sleep paralysis, gastroesophageal reflux, body sores, etc. [65–
1]. To improve this detection, added some machine learning techniques to have a more robust and more accurate
osture change algorithm. Information from the stages and the complete heartbeat motion cycles (events) are used to
et the features used for our posture identification model. The heartbeat motion features have been extracted for user
uthorization [58]. Similarly, in our study, the bed vibrations caused by heartbeat and respiration captured by a bed-
ounted seismometer can be used to get physical human vibration features to differentiate the sleep postures on the
ed. A heartbeat motion cycle has seven stages, atrial contraction (ATC); mitral valve closing (MC); aortic valve opening
AO); point of maximal acceleration in the aorta (MA); aortic valve closure (AC); mitral valve opening (MO); rapid filling
f left ventricle (RF), that are shown on Fig. 17.
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Fig. 17. The heartbeat related bed vibrations are produced by the consecutive mechanical movements during a heartbeat (MC, IM, AO, then MA).
The relative amplitudes change depending on the person and the sleep postures. So the movement features can be used for posture detection.

Fig. 18. Sleep posture identification. (a) Extracted template. (b) vibration data. (c) stage isolation based on cross-correlation coefficients. (d) zoom-in
display.

We observe that different postures on the bed cause different variation patterns in the time domain amplitude of some
motion stages in Fig. 4. Information from the stages and the complete heartbeat motion cycles (events) are used to get
the features used for our posture identification model. The two steps of our feature extraction algorithm shown in Fig. 18
are described as follows:

7.2.1. Segmentation
We separate the constant signal read by the seismometer into individual separated events. We implement the cross-

correlation between the bed seismic signal and a template of the reference heartbeat motion cycle. The correlation
coefficient is calculated, and a threshold of 0.90 is established to identify the starting point of the events. The result of
the correlation is shown in Fig. 18(c) Then, the event is segmented based on the starting point and the template length.

7.2.2. Features selection
Once the event is isolated, we locate the local maximum points by their amplitudes (peaks). To ignore some peaks

presented by the noise, we set a minimum distance between peaks. We realize by the observation that some stages
(AO, AL, and RF) change their magnitude on time domain according to the position on the bed. We use these changes to
construct three features for the classification model. The first and the second features are rate magnitude on time-domain
between AO:RF and AL:RF. Also, we realize that there are some delays in the arrival time of RF depending on the lying
position. Therefore, we use as the third feature the time difference between ATC (the first stage) and RF. Finally, we
incorporate the event standard deviation as a feature to increase the accuracy of our classification model.

7.2.3. Sleep posture identification
To identify the sleep postures, we propose to use a machine learning-based approach. Based on a supervised machine

learning algorithm, Support Vector Machine (SVM) [57], data are transformed using a kernel to find the optimal boundary
between the different classes. SVM and its derivatives have been widely used in the biomedical engineering [13,58]
because it is efficient and easy to implement on embedded devices.

Further experiments on this new posture change methodology are going to be considered in future work and
incorporate into the Helena system for a new systematic experimental round with multiple people during the whole
night of sleep.

8. Conclusion

An accurate and suitable pervasive sleep monitoring system (Helena) based on a contactless and non-invasive bed-
mounter sensor is proposed in this paper. Novel methods for heart rate and respiration rate estimations have been
18
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introduced only based on heart vibrations on the bed. For the first time, a non-intrusive method to detect and alert
falls from bed has been introduced with an accuracy higher than 95%. The system also allows real-time monitoring of
movements and posture changes. The system is able to estimate heart and respiration rate every 3 s, and changes in
posture, movements, and fall downs with a delay of a maximum of 5 s. The alerts are then sent to caregivers, which enable
early intervention and rapid decision-making. While the real-time feature may not be urgent for movement and posture
change detection, this feature is significant in terms of fall detection, as this type of event requires immediate attention.
The performance has been tested multiple times on different people, beds, environments to determine its accuracy and
has been compared with FDA approved wearable devices reaching promising results. The system is envisioned to be a
life-changing for high-risk communities, like seniors, where there is a lack of non-contact devices for monitoring their
sleep patterns and assess their vital signs.
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