

KENNESAW STATE U N I V E R S I T Y Module 11: Cloud Integration with physical systems Sensors Data Collection and Cloud Communication

Dr. Maria Valero

Agenda

- Sensors and Sensor Types
- Features of Sensors
- Sensors in ubiquitous environments
- Object Sensors
- Data from devices
- Cloud for gathering sensor data
 - Example InfluxDB
 - Example Grafana

Sensors

Sensor

 A device that measures a physical quantity and converts it into a signal which can be read by an observer or by an instrument

Sensor sensitivity

 How much the sensor's output changes when the measured quantity changes

Sensors Types

- Thermal:
 - Temperature/heat sensors
- Electromagnetic:
 - Electrical resistance/voltage/power sensors, magnetism sensors, metal detectors, RADAR
- Mechanical:
 - Acceleration, position, pressure, switch, liquid sensors
- Chemical:
 - Odor (smell) sensor, oxygen sensors
- Optical radiation:
 - Light sensors, infra-red sensor, proximity sensor
- Acoustic: Sound sensors
- Motion sensors:
 - Radar gun, speedometer, tachometer, odometer
- Orientation sensors: Gyroscope

Features of Sensors (1)

Light Sensors

- Detecting light intensity, density, reflection, color temperature, type of light
- Rich information, very low cost

C-MOS Camera

- Visual information about the environment
- Processing power and storage needs are often large
- Users feel uncomfortable

Light sensor

Location sensor

- GPS(Global Positioning System) is mostly used
- Coarse location information
 - Cellular network infrastructures: Global System for Mobile Communications (GSM)

Features of Sensors (2)

Audio, Microphones

- Interesting information: Noise level, type of input, base frequency
- Using minimal processing: Less than 200 bytes of RAM
- Multiple microphones: Richer information
- Very cheap
- Can be extended up to speech recognition by using more processing power
- Ultrasonic sensors: Augment human sensory capabilities

Accelerometers

- Information on the inclination, motion, acceleration of the device
- Typical: Mercury switches, angular sensors, accelerometers
- Especially interesting in examination of usage patterns

Touch sensor

• Can reduce energy consumption: operative in the user's hand

Accelerometer sensor

Features of Sensors (3)

Air pressure

Some hints: Closing door

Temperature sensor

- Most sensors are cheap and easy to use
- Detect body heat, arctic or desert environments

Passive IR sensors (Motion detector)

Movement of the device itself is detected as well

Proximity sensors

• Determine a proximate distance between a physical object in the range and the device

Gas sensor

• Problem: delay in measurement, enormous energy consumption

Air Pressure Sensor

Features of Sensors (4)

Biosensors

- User awareness
- Skin resistance, blood pressure: sports and medical applications
- Emotional state of the user may be obtained

Magnetic field

- Similar to a compass
- Direction of a device or movement can be determined
- This sensor can give false information

Tilt sensors

• Determine the tilt angles of the device

No-power sensors

- Metal ball switches, mercury switches, solar panels
- Extremely low power consumption

Tilt Sensor

Sensing Environments

 Information processing has been thoroughly integrated into everyday objects and activities → Ubiquitous environments

Paradigm change

- Ordinary: a single user consciously engages a single device for a specialized purpose
- New: engages many computational devices and systems simultaneously, in the course of ordinary
 activities, and may not necessarily even be aware that they are doing so

Related technologies

- Ubiquitous computing, pervasive computing, ambient intelligence
- Haptic computing, things that think

Sensors in Ubiquitous Environments

Body Sensor

- Physiological sensor
- Biosensor: Identity, emotion, facial expression, behavior, gait
- Location sensor (GPS)

Environment Sensor

- Video camera
- Light
- Noise & sound
- Temperature & humidity
- Pressure
- Movement
- Acceleration

Object Sensor

Position & status of object

Service & Applications

Application model

Services

Application Space	Personal Services	Community Services	Industrial Services
Theme	Lifestyle Assistant	Wireless Healthcare	Asset Monitoring
Use Cases	 Mood based services Nutrition Entertainment 	 4. Wireless hospital 5. Remote patient monitoring 5. Emergency coordination 	 7. Store of the future 8. Food processing tracking

Sensor Data & Processing

Input Data	Sensor	Data Processing Techniques	
Video	CCD CMOS	 Compression: MPEGX, H.26X, JPEG Facial detection techniques Data streamining techniques 	
Audio	Microphone	 Compression: MPEGX, G.7XX, AAC Audio data processing techniques Voice recognition 	
Position	GPS RF (Radio Frequency) system	Position detectionMap data mapping (addressing)Time detection	• Data mining
Bio	ECG, EEG, EMG, PPG, GSR Skin temperature Respiration Blood Pressure (BP)	 Heart Rate Extraction Stress Level Emotion Estimation Alpha Wave Detection Electrohystereogram, body temperature extraction Health Monitoring Noninvasive BP estimation 	 Data searching techniques Feature extraction techniques
Environment	Light, Humidity, Temperature, Ultraviolet sensor	Noise reductionAwareness Environment	
Movement		 Falling detection Gesture recognition (walking, running,) Human interface 	

Object Sensors

Intelligent object of Swiss ETH

Smart Bag - MIT bYOB Project

Body Sensors (1)

Microsoft's SenseCam

Microsoft's Spot Watch

Body Media's ArmBand

Adias' Intelligent Shoes

Body Sensors (2)

streetware

Fashion-oriented accessories which incorporate emerging technology seamlessly into their users' lifestyles

Body Sensors (3)

http://www.redwoodhouse.com/wearable/index.html http://wearables.cs.bris.ac.uk/public/wearables/esleeve.htm http://www.ices.cmu.edu/design/streetware/

Acceleration Sensor Piezo Actuator Receiver Electrodes Transmitter Electrode

Integrated Sensors

Sensor for smart cars

Data from Devices (1)

- A great variety of sensor produce stream data.
- Stream data is composed for 1D data that typically is in the form value and timestamp.
- For example, a temperature sensor captures temperature during a specific timestamp. See example

Timestamp	Temperature
1/11/2022 10:12:00	73
1/11/2022 10:12:01	75
1/11/2022 10:12:02	78

Data from Devices (2)

	16		Latest				2					
	Time	Pres	Offset	Temperature	Illumination		35					
	(s)	(arbitrary)	(arbitrary)	(캜)	(lux)		-					
714	1714	2.690	-0.002	28.7	9.4							
715	1715	2.684	-0.008	28.7	10.0		- Tar					
716	1716	3.563	0.871	28.4	10.3		1 3.0-					
717	1717	2.695	0.003	27.8	11.1		2 (S					
718	1718	2.691	-0.001	27.6	17.5	_	La -					-
719	1719	2.570	-0.122	27.4	14.9		2.5		1		1 1	-1
720	1720	2.596	-0.096	27.4	15.4		Ó			5000		
721	1721	2.751	0.059	27.3	16.2						lime (s)	
722	1722	3.049	0.357	27.3	16.4							
723	1723	2.630	-0.062	27.2	15.4							
724	1724	2.694	0.001	27.2	15.2		171			21		
725	1725	2.631	-0.061	27.2	13.7		20 1					
726	1726	2.690	-0.002	27.2	13.9		20.0		The second we	the second s	All seconds	
727	1727	2.696	0.004	27.2	14.7		₩ 28 0	N	A A SA		All South and	
728	1728	2.689	-0.004	27.2	15.4		er					
729	1729	2.694	0.001	27.2	15.2		27.0-					1
730	1730	2.690	-0.002	27.2	14.9		de 1					
731	1731	2.691	-0.001	27.2	14.1		₽ 26.0-					
732	1732	2.689	-0.004	27.2	13.9		T O	an 18		5000		10
733	1733	2.685	-0.007	27.3	13.9		Ŭ			0000	Time (s)	
734	1734	2.687	-0.005	27.3	14.5							
735	1735	2.691	-0.001	27.3	15.2							
736	1736	2.687	-0.005	27.4	11.7							
737	1737	2.690	-0.002	27.4	9.0		400-]					
738	1738	2.686	-0.006	27.4	6.6		1000	100				
739	1739	2.689	-0.004	27.4	32.0		중 300-					
740	1740	2.680	-0.012	27.4	25.8			ALL.				
741	1741	2.684	-0.008	27.5	29.5			- 111-				
742	1742	2.687	-0.005	27.5	29.9		100-					
743	1743	2.685	-0.007	27.5	27.8							
744	1744	2.690	-0.002	27.6	27.6		0-				· · · ·	- 1
745	1745	2.686	-0.006	27.6	28.8		0			5000	Time (a)	
746	1746	2.687	-0.005	27.6	31.0	T					nme (s)	
747	A					P	(7414, 337)					

Cloud for gathering sensor data

 Data analysis and visualization of data sensors can be done in multiple Cloud Platforms.

- Cloud technologies have already integrated IoT hubs to retrieve information from devices
- We are going to study other Cloud Databases and Visualization tools to gather and visualize data

InfluxDB + Grafana

- InfluxDB is a time-series database
- Grafana is a metrics dashboard

Benefits

- Both are very easy to install
 - Nowadays there are online tools (no need for installation)
- Easy to put data into InfluxDB
- Easy to make nice plots in Grafana
- FREE

InfluxDB (1)

- Time series database
- Written in Go no external dependencies
- SQL-like query language (InfluxSQL)
- Distributed (or not)
 - Can be run as a single node
 - Can be run as a cluster for redundancy & performance
- Data can be written into InfluxDB in many ways
 - REST
 - API (e.g. Python)
 - File
 - Graphite, collectd

InfluxDB (2)

- Data organized by time series, grouped together into databases
- Time series can have zero to many points
- Each point consists of
 - Time
 - A measurement
 - E.g. cpu_load
 - At least one key-value field
 - E.g. value = 5
 - Zero to many tags containing metadata
 - E.g. host=lcg423

InfluxDB (3)

Points written into InfluxDB using the line protocol format

- <measurement>[,<tag-key>=<tag-value>...]<field-key>=<field-value>[,<field2-key>=<field2-value>...][timestamp]
- Example for an FTS3 server
 - Active_transfers,host=logfts01,vo=atlas value=21
- Can write multiple points in batches to get better performance
 - This is recommended
 - Example with 2000 points
 - Sequentially : 129.7s
 - In a batch: 0.16s

InfluxDB – Example Query

> select value,vo from active_transfers where host='lcgfts01' and time > now() - 3m

name: active_transfers

time		value N	0
2016-01-14T21:25:02.143556502Z	100	cms	
2016-01-14T21:25:02.143556502Z	7	cms/becn	าร
2016-01-14T21:26:01.256006762Z	102	cms	
2016-01-14T21:26:01.256006762Z	8	cms/becn	ns
2016-01-14T21:27:01.455021342Z	97	cms	
2016-01-14T21:27:01.455021342Z	7	cms/becn	าร
2016-01-14T21:27:01.455021342Z	1	cms/dcms	S

Sending metrics to InfluxDB

- Python scripts, using python-requests
- Read InfluxDB host(s) from configuration file, for future cluster use.
- Alternatively, can just use curl

curl -s -X POST "http://<hostname>:8086/write?db=test" -u user:passwd --databinary "data,host=srv1 value=5"

Grafana – Data Sources

0		<	Data sources > Overview Add ne	ew	
### O)))	Dashboards Data Sources		Data sources	LH	
0	root		S ARC	http://influxdb01.gridpp.rl.ac.uk:8086	-
*	STFC	-	Cloud	http://influxdb01.gridpp.rl.ac.uk:8086	-
	Grafana admin Sign out		docker registry	http://influxdb01.gridpp.rl.ac.uk:8086	
			∎ fts3	http://influxdb01.gridpp.rl.ac.uk:8086	256
			galera	http://influxdb01.gridpp.rl.ac.uk:8086	82600 ×
			htcondor	http://influxdb01.gridpp.rl.ac.uk:8086	201
			influxdb	http://influxdb01.gridpp.rl.ac.uk:8086	926au 💌

Grafana – Adding a Database

Grafana – adding a database

5		< 1	Data source	es > Overview	Add new Edit				
	Dashboards Data Sources		Edit da	ta source					
_			Name	galera		Defau	ult 🗐		
5	root		Туре	InfluxDB 0.9.x		<u>·</u>			
9	STFC	-	Http settings	1					
	Grafana admin		Url	http://influxdb01	.gridpp.rl.ac.uk:8086	Acce	ss O	proxy	-
	Sign out		Http Auth	Basic Auth	With Credentials [0			
			InfluxDB Det	ails					
			Database	galera					
			Liser	reader	Par	eword			

Grafana – Making a plot

Grafana – Different types of plots