
Module 5:
Containers Security in 

Physical System

Dr. Maria Valero
Adapted from Gursimran Singh

Module 1



Agenda
• Refreshing what is a container
• Benefits of enabling container security
• Container Security Mechanisms
• Guide to Container Security Best Practices
• Summarizing Container Security



Containers Security



Refreshing: What is a container?
• Containers are based on an entirely isolated environment; 

they provide a solution to the problem of how to get the 
software to run reliably when migrating from one computing 
ecosystem to another computing ecosystem. 



Benefits of enabling Container Security
• Allows development teams to move fast, deploy software 

efficiently
• Less overhead operations as Containers require fewer system 

resources.
• Applications operating in containers can be deployed quickly 

to different operating systems



Benefits (2)
Containers make apps portable - It looks the same 
everywhere.
• No matter where you run it.
• Doesn't need to install all the app dependencies.
• Containerization allows for greater modularity i.e., and the 

application can split into modules.



Security 
Mechanisms



1. Docker Image Provenance (1)
• The gold standard for image provenance is Docker Content 

Trust (DCT). 
• DCT presents the capability to use digital signatures for data 

sent to and received from remote Docker registries. 
• With DCT enabled, a digital signature is added to the image 

before they are pushed into the registry. 
• When the image pulls DCT will verify the signature, by 

ensuring that the image comes from the correct organization 
and the content of the image exactly matched with the 
image that was pushed. 



1. Docker Image Provenance (2)
• It is also possible to verify the image using digests. 
• A digest is the sha256 hash of a docker image. 
• When the image is pushed, a docker client will return a string 

that represents the digest of an image. Whenever the image 
is pulled, the docker will verify the digest matches with an 
image. Any update in the image will result in the generation 
of the new digest.



1. Docker Image Provenance (3)



2. Security Scanning (1)
• Docker security scanning gives the ability to do a binary level 

scan of all images. 
• The image scanner automatically helps to identify all the 

vulnerabilities and reduce risk.
• It also ensures the integrity of a container image. 
• Docker security scanning is available as an integral part of the 

docker cloud and docker data center but not as a stand-alone 
service.



2. Security Scanning (2)



3. Auditing (1)
• The production environment is regularly edited to ensure 

that all the containers are based on up-to-date containers, 
and both hosts and containers are securely configured.
• Auditing directly follows security scanning and image 

provenance. 
• It isn't enough to scan image before they are deployed as 

new vulnerabilities are reported. Therefore, it is essential to 
scan all the images that are running. 



3. Auditing (2)
• Some tools can be used to 

verify that the container 
files system has not 
diverged from the 
underlying file systems. 
Tools, such as docker diff is 
used to list the changed 
files and directories in a 
container file system since 
the container was created.



4. Isolation and Least Privileged (1)
• The significant security benefit of the container is the extra 

tooling around isolation. 
• Containers work by creating a system with separate 

namespaces. 
• The principle of least privilege is defined as "Every program 

and privileged user of the system should function using the 
least amount of privilege required to complete the job" 
• Concerning containers this represents that each container 

should run with minimal set of privileges possible for its 
effective operation.



4. Isolation and Least Privileged (2)
• A container can also be secured by running containers with 

read-only file systems. 
• In docker, this is achieved by only passing the read-only flag 

to docker run. 
• By passing the read-only flag, the attacker will be unable to 

write the malicious scripts to the file systems and unable to 
modify the contents.



5. Runtime Threat Detection (1)
• No matter how good a job is done with vulnerability scanning 

and container hardening. There are always unknown bugs 
and vulnerabilities that may recognize in runtime and cause a 
disturbance. That is why real-time threat detection is 
essential. 
• Tools like AuqaSecurity and Twistlock offer runtime threat 

detection. 
• Twistlock provides full-stack container and cloud-native 

cybersecurity for teams using Docker, Kubernetes, serverless, 
and other cloud-native technologies. 



5. Runtime Threat Detection (2)
• Twistlock automatically learns the behavior of the images and 

microservices while preventing anything anomalous.



6. Access Control (1)
• The most two standard security modules are SELinux and 

AppArmor. 
• They both are an implementation of the Mandatory Access 

Control (MAC) mechanism. 
• SELinux and AppArmor are brave attempts to clean up the 

security holes in Linux containers. 
• MAC will check that the user or process has the right to 

perform various actions such as reading and writing. 
• Application Armor (AppArmor) is an effective and easy to use 

Linux application security system. It protects the OS and 
applications from any kind of internal and external threat.



6. Access Control (2)
• AppArmor is available for docker containers and applications 

present in the containers. 
• AppArmor is always recommended to use as is by default 

with Ubuntu 16.04. 



7. Avoid Root Access (1)
• The namespace feature in Linux containers allows developers 

to avoid root access by giving isolated containers a separate 
user account. 
• So, a user from one container does not have access to 

another container. 
• System Administrator should have to enable this feature, as 

this feature is not enabled by default.



Guide to Container Security Best 
Practices (1)
• Create Immutable Containers 
• Immutable infrastructure is a paradigm in which dockers are never 

modified after they are deployed, i.e., they can be only rebuilt

• Securing Images for Container Security
• Specify the list of trusted sources for the images and libraries

• Securing Registries for Container Security
• Once the image is built and secured in the best way possible, so now 

the image must be stored in a registry. If the image is stored in a 
registry, one should scan them regularly for the vulnerabilities



Guide to Container Security Best 
Practices (2)
• Run Images From Trusted Sources
• Building images from trusted sources can minimize the attack surface. 

While building images from trusted sources, there are still some 
chances that vulnerabilities can be present. Therefore, it is 
recommended to scan the content with the scanning tool.

• Securing Deployment for Container Security
• The target environment needs to be secure, i.e., the operating 

system should be appropriately hardened on which containers are 
running. If deployed to cloud environments, one should consider 
immutable deployments



Guide to Container Security Best 
Practices (3)
• Keeping Containers Lightweight
• While running containers, it is possible to load too many packages. 

Therefore, lightweight containers should be chosen for reliability

• Implement Robust Access Control
• In containers, all the users are assigned root privileges by default. 

Therefore, it is necessary to change their access privileges to a non-
root user. By using role-based access control (RBAC), you can 
configure specific sets of permissions.



Guide to Container Security Best 
Practices (4)
• Handle Confidential Data With Care
• Never store secrets like keys, tokens, passwords, and confidential 

information inside docker files, because even if the data is deleted, it 
can easily be retrieved from the image history.



Summarizing Container Security

• Containers are gaining popularity as they are efficient and 
fast. Therefore, Containers Security must require a different 
approach. So, one should follow these Container Security 
Best Practices. 


