
Enabling Cyber Analytics using IoT Clusters and
Containers

Soin Abdoul Kassif Traore∗, Maria Valero†, Hossain Shahriar†, Liang Zhao†, Sheikh Ahamed‡ and Ahyoung Lee∗
∗Computer Science Department, Kennesaw State University

‡Computer Science Department, Marquette University
†Information Technology Department, Kennesaw State University

Email: straore3@students.kennesaw.edu, {mvalero2, hshahria, lzhao10, alee146}@kennesaw.edu, sheikh.ahamed@marquette.edu

Abstract—Many tech stars like Netflix, Amazon, PayPal, eBay,
and Twitter are evolving from monolithic to a microservice
(containerization) architecture due to the benefits for Agile and
DevOps teams. Microservices architecture can be applied to
multiple industries, like IoT, using containerization. Since the
IoT industry has exponential growth, universities’ responsibility
is to teach IoT with hands-on labs to minimize the gap between
what the students learn and what is on-demand in the job
market. There are many approaches in the containerization field,
but they can be challenging to use without depth knowledge
in virtualization and code encapsulation. After a deep analysis
of the containerization challenges, in this paper, we present a
cyberinfrastructure based on containers to solve the virtualiza-
tion and code-encapsulation problems. The cyberinfrastructure
will provide the necessary tools for data collection and code
development and testing using an IoT Cluster. It is a web-based
platform that allows users to securely go into containerization
without spending time learning virtualization. Results show
that our proposed cyberinfrastructure allows the creation and
deployment of microservices in multiple IoT devices and ensures
easy data collection for posterior cyberanalysis.

Index Terms—Containerization, web-based cyberinfrastruc-
ture, Cyberanalytics, IoT Cluster.

I. INTRODUCTION

During the past decade, we have seen the adoption of
microservices (containers) in the developers’ community. Ac-
cording to IT researchers at O’Reilly, “more than 77% of busi-
nesses have now embraced microservices. The main reason for
deploying microservices is to transform existing monolithic
IT environments, systems, architectures, and applications into
more flexible applications and solutions [1].” Microservice is
mostly an architecture style, but recently, there have been
significant improvements of lighter virtualization technologies,
such as container-based virtualization and container orches-
tration solutions, providing portability for microservices [2].
Adopting a microservice architecture approach in IoT devices
development will deliver multiple benefits to data collection
and cyberanalytics. For example, using containers in IoT
devices deployment and testing can help to gain some time
in the development of applications for both industry and
academia [3].

The continuous development of IoT demands more scala-
bility, extensibility, and maintainability. Unfortunately, mono-

lithic applications cannot offer such much-needed features
because of their architectural structure [4]. So, implementing
frameworks that provide automation of research processes can
help adopt an adequate IoT architecture. Containers are a great
application of the microservices concept, and they allow us to
implement innovative frameworks to ease the research process
around this technology. Thus, a framework that automatically
generates microservices designed for specific research needs
(e.g. data collection for data analytics) will give more time
to develop essential modules without compromising others.
Having such a framework can be a game-changer in the
process of IoT research.

In this paper, we start exploring the concept and history of
microservices implementation. We explore the microservices
architectural concept and its emergence Service-Oriented Ar-
chitecture (SOA), emphasizing self-management and lightness.
We also discuss different implementation ideas of the architec-
tural concept of microservices, among others, containerization,
service discovery, container orchestration, continuous delivery,
and service mesh. Then, we propose an approach to automatic
generations of containers and their deployment in a IoT cluster
with the idea of improving the data collection process and
the cyberanalytics. We explain the details of the proposed
framework, and how we can incorporate it into a research
project. We focus on different implementations of container-
ization in general and especially on Docker [5]. The main
contributions of this paper are: (1) we review the microser-
vice architectural concept in Service-Oriented Architecture
(SOA) and Containers; (2) we discuss potential approaches of
cyberinfrastructure implementation using Docker containers.
Also, we explore difficulties in IoT research and IoT testing
using cloud-based platforms, and we introduce the idea of
a dedicated platform for IoT development, testing and data
collection; (3) we propose a novel automatic microservice
generator for IoT clusters; and (4) we conduct experiments
on a cluster-based IoT infrastructure.

II. MICROSERVICES TECHNOLOGY

During the last ten years, software engineers came out
with a new trend of software design that aims to facilitate
the development and delivery of software infrastructure. The

new software design approach is based on independent de-
velopment units. It is based on Service-Oriented Architecture
(SOA) [6]. Microservice is an architectural style inspired by
Service-Oriented Computing (SOC) and SOA. It is a relatively
simple idea that consists of breaking down the software into
an ensemble of executable artifacts. Each of these artifacts is a
moonlight that is modelized to communicate with others and
share resources, but each artifact is isolated. Microservices
rely on REST (Representation State Transfer) and HTTP
formats. According to James Lewis and Martin Fowler, the
term “microservices” was first discussed in the May 2011
software architecture workshop to denote a common architec-
tural approach the workshop participants had been exploring
[7]. From a technical perspective, microservice applications
were influenced by new generation software development,
deployment, and management tools. Also, the architecture
technique was used longtime before the term “microservice.”
The early architecture also included containers that Docker is
used to implementing. In this section, we describe the main
components of the Docker architecture and the process behind
the use of Dockers.

A. Microservices and Containers

Today, software developers have to heed constraints that
did not exist a couple of decades ago. Software architecture
has to support specific deployment contexts, and it has to
be cloud-oriented. There are principles constraints such as
services, adaptivity, or models at runtime. These constraints
involve taking into account modularity, superposition, and
loose coupling. Pattern constraints like deployment specifics
such as virtualization aspects which are: shared resources,
portable containers, and controller-based feedback loops [8].

Fig. 1. Container architecture by Docker

Containers are an abstract unit of software inspired by the
microservices architecture. They are independent executable
units that include code, runtime, system tools, and system
libraries to run applications. Containers provide a lightweight
virtual environment that groups and isolates a set of processes
and resources such as memory, CPU, and disks from the
host and any other containers [9]. Processes and resources are
inside the container, and thus they provide operating-system-
level virtualization by abstracting the userspac As shown in
Figure 1. So, containers can have virtual IP addresses, SSH

access, OS images, and resources management. These features
are possible because Linux Kernel functionalities give an
abstraction layer on top of an existing kernel instance to create
isolated environments similar to virtual machines.

A container is a group of processes isolated from the rest of
the system. They execute their workload from a specific image
that provides all files necessary to support the operations. The
developer often uses a container engine to do these operations
successfully and as an excellent matter. We will focus on the
Docker engine, an open platform for developing, shipping, and
running applications. Docker enables you to separate your
applications in multiple isolated units called a container so
that you can deliver software quickly[10]. It is an open-source
implementation of the engine that powers dot Cloud, a popular
Platform-as-a-Service. Docker architecture is composed of:

• The Docker Client is a Command Line (CLI) Interface
used to configure, manage, and interact with Docker.

• Docker Daemon is the server that runs as the daemon.
It listens to API requests and manages Docker objects
(images, containers, networks, and volumes).

• Images are the read-only template used to create Docker
containers. Docker images can be from public Docker
repositories using pull and push commands.

• Docker File is configuration files used to build and
configure images.

• Containers are instances of images that run applications.
CLI manages containers, and new images can be created
from custom containers, enabling developers to have safe
image samples of their infrastructures.

• Docker Registries is a repository of Docker images, and
it is composed of public repositories such as Docker
Hub and Docker Cloud. We can pull official software
images from the repositories and configure them to our
convenience.

• Docker Engine: Combination of Docker daemon, Rest
API, and CLI tool.

The process of creating a container with Docker is simple.
The commands used by docker build come from a Dockerfile
and a context. So, a context is a built set of files located
through a specific PATH or an URL. That idea brings us to a
build process that can refer to any of the files in a context; it
can also use a copy of instruction to reference any file. From
the website docs.docker.com, a URL in Docker is a parameter
that can refer to three kinds of resources: Git, pre-packaged
tarball context, and plain text. Once a container is created, it
uses a remote filesystem provided by a container image. Thus,
the container image filesystem contains everything needed by
the application to run. Also, Docker has a specific tool named
Docker Container that manages the container of Docker soft-
ware. All of those features and functionalities discussed above
make Docker the best Container creation and management
candidate for the framework implemented in this research
paper.

III. CYBERANALYTICS FRAMEWORK WITH DOCKERS

The proposed framework has multiple challenges from the
design side to the implementation side. Its primary purpose
is to help users get familiar with microservices and offer
a reliable and secure space to execute them, and create a
platform where students and researchers can easily collect
data for cyberanalytics from IoT devices. Thus the framework
users can create microservices containers blueprint called
Docker Files using a remote a Docker Engine and eventually
run containers remotely in IoT devices without any prior
resource configuration or download. Also, the cybereanalytics
framework has an additional physical part: an IoT cluster for
data collection using sensors and Raspberry Pis. The idea
is to offer a complete containerized environment capable of
supporting cyberanalitycs on IoT devices from software to
hardware. Indeed, the design has three main components: a
Linux server as the foundation for the framework. Then, we
have the Docker Engine that will provide necessary resources
for container creation and management. Finally, we have an
IoT cluster used for data collection for cyberanalysis purposes.

A. Platform foundation: The Linux Server

The server side is composed of a Linux server, the host
Operating System for this framework, and a web server for
the user interface. It also includes a Docker Engine (DE) that
is the microservices part of the framework. The client-side
is a user-friendly website that allows users to set up a test
environment with tools, libraries, and dependencies ready for
multiple testing scenarios using containers. Various containers
can be created quickly and share data and resources if needed
for testing through their configuration.

We design an environment to enabling easy user-framework
interaction, so they can easily manage containers in the Docker
environment. The server has a particular setup and for security
purposes. Not only we have to take the regular server security
steps, but also, we have to allow users to interact with the
servers safely. A user through Docker must create, configure,
run, modify and delete containers interpreted in our Linux
systems as files. Enabling users to modify files on a server
remotely can bring security concerns. So the challenge is to
give enough permission to the framework’s user to interact
with the containers. Users cannot have privileges on the
system kernels and critical server files. The idea is to maintain
the infrastructure applications and secondary servers in a
Docker environment by running them in special containers
only accessible by the server administrator. Thus, regular users
will be granted some limited privileges on the framework
docker engine that will allow them to work with containers
safely without compromising the framework or other users’
containers.

B. The Docker Engine

Our Docker Engine includes one class with an Apache
server image configured to manage the user interface, which is
basically a website with unique features. Also, it has a Maria
DB container, the database software used to store information

Fig. 2. IoT Clusters Platform for Data Collection

accessible from the website. Those first two containers have
their own IP addresses. The last container in this class is the
PHPmyAdmin software image used to handle the administra-
tion of Maria DB over the Web. For efficient management
for these two types of containers, we will use Kubernetes to
manage the containers. Also, Kubernetes has namespaces and
subnamespaces that will offer restrictions necessary for the
system hierarchy.

The second class of containers is containers created by the
system users for their utilization. Those containers will be
accessible by their owners within the system and authorized
people they choose to interact with. They are pullable out of
the system for personal use, and they can be published so
everyone using the framework can have access.

Creating a new container with its configuration is done by
using a file called Docker File. In contrast with the containers
and images of the framework, Docker Files need to be run
from the server to pull images from the Docker Hub or our
database. Those will be the only authorized framework user
files to run on the Linux server, and we have to handle their
privileges. They have only privileges to use Docker daemon
to pull or to push container images using the Linux server.

C. IoT Cluster for Data Collection and Cyberanalytics

The IoT data collection platform is part of the physical part
of the framework. It adds more flexibility and provides an
opportunity to collect, processes, analyze, and visualize data
using our framework. The IoT clusters are composed of 20
Raspberry Pis 4 (RP4) mounted in clusters of 6 devices. As
shown in Figure 2, each RP4 is connected to a server and has a
secure data transfer preconfigured. We have 2 RP4 servers that
host a web server for virtual hosts. We also propose 20 Ar-
duinos and 150 sensors, from temperature sensors to cameras
and motion sensors. One RP4 cluster has been configured and
is ready to use. All servers are implemented with microservices
and are part of our integrated framework. The whole platform
has a monitoring system using Apache Server instance with a
website that collects RP4 and Arduino running statistics using
Websockets and HTTPS protocols. As shown in Figure 3, the
monitoring websites used JavaScript and PHP to manage the
connected devices. The primary purpose of this platform is to
have a physical data collecting platform that can load code for

sensors, run the code and transfer the data to the framework
for advanced cyberanalytics.

Fig. 3. IoT Clusters Platform Architecture

IV. FRAMEWORK IMPLEMENTATION

The overall system is a microservices-based framework us-
ing Docker to allow students and researchers to take advantage
of all functionalities and features proposed by containerization
without spending time and energy learning and setting up
a personal container database and software. They can also
collected data from different sensors for cyberanalytics. The
framework provides multiple benefits due to its layered archi-
tecture. Layering a system simplifies maintenance and future
developments. Thus, we can intervene on different layers
without compromising the whole infrastructure. Also, it eases
resource allocation. Each layer checks requests and data for
errors before routing workflow to the next layer. Entries and
data are reviewed twice every time, first by the concerned layer
and second by the following layer. Finally, users are free to
implement containers responding to unique configurations; the
system is flexible and designed for container customization. So
it guarantees a certain degree of elasticity compared to actual
physical computers or devices.

A. System Architecture

The primary goal of the framework is to help researchers
and students in the deployment and testing of codes and
collected data for posterior analysis. We want to help them
adopt microservices in their process and help them make the
transition by offering a framework easy to use with no prior
or little knowledge in containers in general and Docker in
particular. Thus the framework architecture is user-friendly,
and it has information on Docker containers, how to use them
efficiently and how to take advantage of them.

We propose an architecture divided into three layers passing
sharing information to give users a pleasant experience using
the framework. The first layer is the user interface composed
of a website. The second and third layers are inside the Docker
engines consisting of algorithms and software needed to create
and manage containers. We propose an architecture divided
into three layers passing sharing information to give users a
pleasant experience using the framework. The first layer is the

Fig. 4. Proposed Framework Architecture

user interface composed of a website. The second and third
layers are inside the Docker engines consisting of algorithms
and software needed to create and manage containers. Details
of the described architecture are shown in Figure 4.

The user interface is a dynamic website host in a webserver
container and can access resources stored in a MariaDB
container. The server-side of the website is in PHP, and it
handles multiple user functions and interactions with the rest
of the framework. PHP scripts run the creation of a new user
or connections to user accounts. It also allows users to access
containers. Suppose the user wants to create or generate a new
container, the Docker file module is used through a docker
file generation form. In that case, he has access to a container
creation form that includes a list of images present in the
framework, a list of image chosen libraries and dependencies,
and finally, a list of possible configurations scenarios on how
the future container will run. Also, a returning user can access
a list of containers created in the preview sessions and a list
of containers shared with him by other users. This part of the
website is accessible from the User Management Unit. Finally,
a user with a container or multiple containers can interact with
those instances using the command line tool integrated into the
website with a container download option. HTML, JavaScript,
and CSS assist the PHP webpages on the client-side to give
the user an excellent and clean user interface.

The second layer in the docker engine gathers user infor-
mation to execute the user workload. When a user requests a
docker file generation at the lowe-level, the container building
module uses the future container information to pull the
needed image from the database. It starts the container creation
process by downloading or pulling libraries and dependencies
from the local database or the internet. In this part, a PHP
code sent to the docker engine handles all processes explained
above. Finally, it finishes running the docker file by adding
the user code and configurations to the container. Once done,
the container is passed to the User management Unit to store
the container under user availability and give to the container
management unit to access it. This layer offers high scalability

Fig. 5. Framework Overview

to the user. The workflow can be divided between multiple
containers providing total control on the instances’ runtime
scheduling. The third layer, composed of databases run in
containers, is saved by information about images and users.
It depends on the second layer and executes commands from
the three modules that compose that layer. It is also the
layer that has internet access to download files needed for
container creation. Figure 5 shows a complete overview of how
a workflow is handled and processed by different framework
modules.

B. Work in progress

Fig. 6. Docker file Creation From

We have a framework prototype composed of the Linux
server, the Docker engine, and The database. A user has access
to a websiteand can create Docker files from the system.
The Docker file pulls an image from an external repository
using the framework and create a container with particular
specifications set during the docker file creation process. The
website has three main functions: information on containers
and how to use them, a docker file creation form, a CLI to
interact with the framework. Information provided is about
different images and configurations of containers that can be
created on the framework. It also has data on particular images,
their version, and their dependencies and libraries. So no
prior research is needed before starting using the system. The
Dockerfile generation form has three main sections handled
by an HTML form shown in Figure 6. The first section is
important because it contains the name of the future container,
and it is essential to have unique names for each container to

avoid confusion or collisions. The second section lists images,
dependencies, and libraries from which the user can choose.
The last area is about different configurations scenarios that a
user wants to set within the container, for example, running
a specific code at the start of a container running time. The
lists are subjective because they are updated in terms of the
database. Also, in this part, the user will upload code files
to be encapsulated in the container. It is essential because it
makes it easier to test developing code. Also, an encapsulated
code can be used to test the container functionalities before
starting using it. The code file path in the future container is on
the form, which is /usr/src/app. Docker recommends that the
user use the app folder for their project and different code and
script files depending on the type of container; this folder can
change. Data and instructions filled in the form are processed
in the back using PHP and SQL queries. The user also has
access to a CLI; it provides an interface that the user can use to
interact with a Docker file previously created. Thus, a user can
generate a container from a Docker file and test it to ensure
that it has configurations and libraries needed for its work or
research. Commands entered in CLI are executed on the Linux
Server, and the results are sent back to the web page using
JavaScript and PHP. At this point, the actual database stores
names of official images from Docker Hub, Dependencies,
and libraries related to images and information about possible
containers configurations. As shown in Figure 6, a user will
first select an image name stored in the database during a
Docker file creation process. Then, he has access to a list of
dependencies and libraries related to the image name selected.
Regarding what is chosen in the second part of the process,
the user will access possible configurations built and stored
in the database. Also, the user can add custom configurations
that are not in the system, but it has to be done in a particular
way to avoid misconfigurations. The prototype does not store
any created file for the container, and the user management
database is still under development. So the prototype’s primary
purpose is to generate and downloadable Docker files, and it
provides a platform to test a container generated from the
Docker file. For user privacy, there is an automatic deletion
of all containers and Docker files created. At this point,
the actual database stores names of official images from
Docker Hub, Dependencies, and libraries related to images
and information about possible containers configurations. As
shown in Figure 7, a user will first select an image name stored
in the database during a Docker file creation process. Then, he
has access to a list of dependencies and libraries related to the
image name selected. Regarding what is chosen in the second
part of the process, the user will access possible configurations
built and stored in the database. Also, the user can add custom
configurations that are not in the system, but it has to be done
in a particular way to avoid misconfigurations.

C. Application of the Propose Framework on a Project

We explain how our proposed framework could help im-
plement concrete a capstone originally developed in 2019 at
********* University. The research project was to implement

Fig. 7. Docker file Creation UML

a non-invasive computer vision for fall-detection using IoT and
artificial intelligence. This project objective was to implement
a prototype that could help detect older people’s falls subject
to different health conditions and prevent by SMS appropriate
staff or caregivers on time. Thus, it can be a lifesaver tech-
nology for people that need the help of others to take care of
themselves. They used multiple tools for the implementation
of this project which are: (1) a raspberry pi connected to
RapsCam for the data collection part; (2) a python script using
sockets for data transmission that stream live videos from the
Raspberry pi to a server; and (3) a OpenPose model to feed
images and train the artificial intelligence model.

Our proposed framework could help save time during
the implementation of such innovative ideas. We have the
hardware and software necessary to implement most IoT
projects, and the architecture used by the framework gives
flexibility to researchers and students. For the implementation
of this project, the group would use different processes when
using our framework. The IoT clusters explain the above
functional raspberry pis, and we propose a variety of sensors
for local users. RaspCam is part of our inventory, as well
as motion detectors. These devices would help save some
financial resources for the group, and they could focus more
on the software part of the research, which was the primary
focus. The clusters communicate directly to the proposed
cyberinfrastructure using python script and Websockets. It also
offers a python script of sockets enabling the Raspberry Pis to
transfer collected data to a server without much configuration.

D. Future Work

We are implementing ways to store containers and enable
users to interact with safely within the framework. We are
exploring ideas of creating virtual clusters to store containers
belonging to the same user or same group of users. Also,
users have limited interaction with containers created on
the actual implementations, and the containers are run for
testing purposes. The current prototype does not allow any
further interaction. Thus, further development of the container
interaction module will enable users to run containers and
interact with them without leaving the framework or without a
need to download them locally for advanced interactions. So,
the CLI needs more functionalities resulting in getting more
permission to modify and interact with the Docker machine

from the Linux Server. We are looking for a safe way to
allow those interactions without creating a bridge that can be
exploited later for hacking purposes.

V. CONCLUSION

The recent development and standardization of microser-
vices which have huge application possibilities, has allowed us
to consider a framework that will help researchers and students
in the difficulty encountered during the development, testing,
and deployment phases of their research. The framework that
we are proposing could help them accelerate their research
process, and it will allow them to accomplish the tasks cited
earlier with a certain simplicity. Docker provides flexibility
and modularity for the construction of complex software
systems. The fact that it is open-source cloud-oriented and
facilitates code virtualization, the academic sphere should
take advantage of it and develop applications that can help
boost research and ease its difficulties. The implementation
discussed is still under development, but the current prototype
can help people with limited knowledge of Docker and help
them create and run their own Docker containers with a certain
simplicity. We recognize a need for further work to improve
the database, user interaction, and repository. The architecture
present in this paper will not substantially change and, we
discussed improvements in future work.

REFERENCES

[1] S. S. Mike Loukides, “Microservices adoption in 2020,”
Jul 2020. [Online]. Available: https://www.oreilly.com/radar/
microservices-adoption-in-2020/

[2] R. H. K. I. of Technology, R. Heinrich, K. I. o. Technology,
A. van Hoorn University of Stuttgart, A. v. Hoorn, U. o.
Stuttgart, H. K. K. University, H. Knoche, K. University, F. L. S.
AG, and et al., “Performance engineering for microservices:
Research challenges and directions,” Apr 2017.

[3] F. Osses, G. Márquez, and H. Astudillo, “Exploration of aca-
demic and industrial evidence about architectural tactics and
patterns in microservices.” New York, NY, USA: Association
for Computing Machinery, 2018.

[4] L. Sun, Y. Li, and R. A. Memon, “An open iot framework based
on microservices architecture,” China Communications, vol. 14,
no. 2, pp. 154–162, 2017.

[5] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging mi-
croservices architecture by using docker technology,” in South-
eastCon 2016, 2016, pp. 1–5.

[6] C. MacKenzie, K. Laskey, F. Mccabe, P. Brown, and R. Metz,
“Reference model for service oriented architecture 1.0,” Public
Rev. Draft, vol. 2, 08 2006.

[7] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov,
“Microservices: The journey so far and challenges ahead,” IEEE
Software, vol. 35, no. 3, pp. 24–35, 2018.

[8] A. S. Gillis, “What are containers (container-based
virtualization or containerization)?” Mar 2020. [Online].
Available: https://searchitoperations.techtarget.com/definition/
container-containerization-or-container-based-virtualization

[9] A. Celesti, D. Mulfari, M. Fazio, M. Villari, and A. Puliafito,
“Exploring container virtualization in iot clouds,” in 2016 IEEE
International Conference on Smart Computing (SMARTCOMP),
May 2016, pp. 1–6.

[10] C. Boettiger, “An introduction to docker for reproducible
research,” vol. 49, no. 1, p. 71–79, Jan. 2015. [Online].
Available: https://doi.org/10.1145/2723872.2723882

