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Abstract. Diabetes and metabolic diseases are considered a silent epi-
demic in the United States. Monitoring blood glucose, the lead indica-
tor of these diseases, involves either a cumbersome process of extract-
ing blood several times per day or implanting needles under the skin.
However, new technologies have emerged for non-invasive blood glucose
monitoring, including light absorption and spectroscopy methods. In this
paper, we performed a comparative study of diverse Machine Learning
(ML) methods on spectroscopy images to estimate blood glucose concen-
tration. We used a database of fingertip images from 45 human subjects
and trained several ML methods based on image tensors, color intensity,
and statistical image information. We determined that for spectroscopy
images, AdaBoost trained with KNeigbors is the best model to estimate
blood glucose with a percentage of 90.78% of results in zone “A” (ac-
curate) and 9.22% in zone “B” (clinically acceptable) according to the
Clarke Error Grid metric.

Keywords: Non-invasive monitoring · spectroscopy· machine learning·
blood glucose concentration.

1 Introduction

The USA is facing an epidemic of diabetes [27], with more than 11.33% of
the population affected by diabetes alone [7] and another 30% by metabolic
syndrome [17]. The lead indicator of these diseases is the blood glucose (BG)
concentration. Measuring blood glucose typically involves either painful blood
extraction multiple times per day or implanting needles under the skin for con-
tinuous monitoring.

⋆ Supported by College of Computing and Software Engineering and Office of Research
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Non-invasive estimation of blood glucose levels has emerged as an exciting al-
ternative for the monitoring and management of metabolic diseases [34]. Among
those, technologies that use optical approaches are both practical and inexpen-
sive [24, 2, 14, 32]. Optical methods function by directing a light beam through
human tissue, and the energy absorption, reflection, or scattering is used to es-
timate blood glucose concentration [21]. Optical methods are portable and can
be easily applied to fingers and other extremities such as earlobes. Several op-
tical methods for detecting blood glucose have been developed, though most of
these have limitations that restrict their utility. They include: (1) fluorescence
spectroscopy [20], which may result in harmful exposure to fluorophore [13];
(2) Raman spectroscopy [10] criticized for its lengthy spectral acquisition time
and poor signal-to-noise ratio [33]; (3) photoacoustic spectroscopy [19], which
introduces noise from its sensitivity to environmental factors [33]; (4) optical co-
herence tomography [12], which is overly sensitive to skin temperature; and (5)
occlusion spectroscopy [4], known to result in signal drift [28]. An alternative op-
tical method (6) near-infrared absorption spectroscopy, avoids these limitations
and is both more practical and cost-efficient than those described above [24, 2,
14, 22, 16, 32]. In addition, near-infrared absorption spectroscopy is fundamen-
tally simple to use in the creation of a powerful sensor prototype. Just a laser
light and camera are needed.

In our previous work [32], we designed and tested a non-invasive sensor
prototype for estimating blood glucose based on near-infrared absorption spec-
troscopy. A device composed of laser light, a raspberry Pi, and a camera was
used to collect fingertip images, as shown in Fig. 1. These images were used to
estimate blood glucose by applying a Machine Learning (ML) model, specifi-
cally a Convolutional Neural Network (CNN). The model used light absorption
data from the images to approximate a function for estimating blood glucose
concentration. However, the initial accuracy only reached 72% with the limited
dataset and that particular CNN model. Therefore, more studies were needed to
determine a suitable ML method that provides higher accuracy for blood glucose
estimation.

Fig. 1. Demonstration of the Blood Glucose Measuring System

This paper presents a comparative study of diverse ML methods trained
with spectroscopy image data to identify the best model for estimating blood
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glucose. Metrics including mean absolute error (MAE), root mean square error
(RMSE), and Clark error grids were used to determine accuracy. We further
discuss the data preprocessing methods used to feed diverse ML models with
the same dataset.

2 Background

In this section, we provide a background of the neural networks and linear sta-
tistical models applied to the spectroscopy image data obtained by our pro-
totype [32], the CNN models VGG16 [31] and MobileNetV2 [29] were used to
determine blood glucose concentration. On the other side, several linear mod-
els were employed, including Random Forest [9], Support Vector Machine [23],
Bayesian Ridge [25], XGBoost [6], AdaBoost Ensemble [1], Histogram Gradi-
ent Boosting [5], Elastic Net [35], and KNeighbors. To apply these methods to
the spectroscopy images, we used data transformation techniques to create new
suitable databases for each method (Section 3). CNN models can only be used
on tensor data because the algorithms are based on Linear Algebra that are
suitable only for use with multi-dimensional matrices (tensors). Linear models
are suitable for all scalar data and use a wide variety of statistical techniques to
approximate the function of the data.

2.1 CNN Models

CNN models work by passing filters through images (represented as tensors)
to extract features such as edges, shapes, and colors. These two-dimensional
features are then flattened and mapped as scalar data which is then processed
through normal neural network layers [3]. CNN models can use different types
of filters through images of varying sizes, providing a wide range of applica-
tions. Since spectroscopy images were used, we applied CNN to determine blood
glucose concentration using VGG16 and MobileNetV2.

VGG16 Neural Network: VGG-16 is a 16 layered deep CNN. A pretrained
version of the network can be loaded which is trained on more than a million
images from the ImageNet database [26]. The pretrained network can classify
images into 1000 object categories. As a result, the network has learned rich
feature representations for a wide range of images. However, the model was
changed to output a single numeric value (blood glucose) instead of the 1000
categories it was trained on. The network has an image input size of 224-by-
224, however the model’s input size was changed to fit 160-by-120. VGG16 is
well-suited for this project due to its ability to detect many different features
and patterns as well as its performance when compared to other models [31]. An
example of the VGG-16 architecture can be found in Fig. 2 (Taken from [30]).

MobileNetV2: MobileNetV2 is a mobile architecture that enhances the state-
of-the-art performance of mobile models across various model sizes, tasks, and
benchmarks. In contrast to conventional residual models, which use expanded
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Fig. 2. Demonstration of VGG-16 Model Architecture, from [30].

representations for the input, the MobileNetV2 architecture is based on an in-
verted residual structure, where the input and output of the residual block are
thin bottleneck layers. Although the architecture of this model is more complex
than most other CNN models, it performs well considering its computational
power. Therefore, it was possible to train MobileNetV2 normally instead of us-
ing a pre-trained model version. MobileNetV2 was chosen for this study because
of its low computational power usage, fast training times, and high-performance
[29].

2.2 Linear Statistical Models

Linear models are a staple of machine learning and statistical modeling due to
the countless algorithms available for function approximation, decision making,
regression, classification, clustering, and prediction. Like CNNs, linear models
were also chosen due to their wide range of applications and their superior per-
formance. They are significantly faster and less computationally intensive than
neural networks, but they can provide similar or better results in many instances.
Many of the linear models used in this study applied bagging, boosting, or en-
semble learning techniques, which allow for higher performance, lower error, and
more optimized training. We propose a mix of models using these techniques to
determine the most effective for estimating blood glucose.

Random Forest Regressor (RFR) Random Forest is a supervised learning
algorithm built on Decision Trees and the Ensemble Learning Approach [?]. De-
cision Trees are tree-diagrams of statistical decisions that lead users to a specific
outcome, result, or prediction. Random Forest uses an optimized approach to
ensemble learning called bagging (bootstrap-aggregating), which works like this:
the model creates multiple decision trees that train on random segments of the
training data, these trees are then used in unison to predict unknown values.
Random Forest was chosen for this study for its novel combination of Decision
Trees and bagging, and its high performance in many domains [9].

Support Vector Regressor (SVR) Support Vector Regression [23] works on
the principle of the Support Vector Machine (SVM) [18]. This model is based on
simple regression algorithms, to fit a line/curve/plane through the data to create
an approximate function. In simple regression, the goal is to minimize the error
rate while in SVR it is to fit the error inside a certain threshold. The flexibility
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of SVR allows to decide how much error is acceptable in the model, and it will
find an appropriate line (or curve or plane) to fit the data accordingly. This
technique was included for its ability to reduce overfitting and handle outliers
in data. It is a well-performing and versatile model.

Bayesian Ridge Regressor (BRR) Ridge Regression is a classical regulariza-
tion technique widely used in Statistics and ML [25]. Bayesian regression allows
a natural mechanism to survive insufficient or poorly distributed data by gen-
eralizing the data, which significantly reduces overfitting and handles outliers.
In addition, this model outputs with a probability distribution, which means
that it outputs multiple predicted values and chooses the most likely value. This
method was used in this study because it performs well regardless of data quality.

XGBoost Regressor (XGB) XGBoost uses gradient boosting, an ensemble
learning using boosting. It trains multiple decision trees to create an ensemble
learner and it relies on the intuition that the best possible next model, combined
with previous models, minimizes the overall prediction error. Through combining
multiple models training, the model achieves high performance, even in cases
where insufficient data and outliers exist. Extreme Gradient Boosting (XGBoost)
is an efficient open-source implementation of this gradient boosting algorithm [6].
The two benefits of using XGBoost are training speed and model performance,
which is why it is chosen for this study.

Histogram Gradient Boosting Regressor (HGB) Histogram-based gradi-
ent boosting is an algorithm that uses the same gradient boosting as XGBoost,
but instead of outputting a single value for blood glucose, it employs binning.
Binning is a technique that converts continuous values into categories, similar
to those used in classification scenarios [5]. By converting regression values to
classification values, it can dramatically increase training speed and reduce the
amount of memory used. Due to this, it is a much faster and lighter alternative
to the XGBoost algorithm, which is why it is chosen for this study.

AdaBoost Ensemble Regressor (ABR) An AdaBoost regressor is a meta-
estimator that begins by fitting another model on the original dataset and then
fits additional copies of that model on the same dataset, but where the weights
of instances are adjusted according to the error of the current prediction [1]. It
creates more versions of the same model to tackle different sections of the training
data, reducing error overall. Due to the large number of varying estimators that
AdaBoost creates, the model is much less prone to overfitting than other models.
The model we chose to train AdaBoost with is KNeighbors, which is described
below.

KNeighbors Regressor (KNN) K-Nearest Neighbors (KNN) classifies a data
point based on its nearest neighbors in the graph [15]. This algorithm is a non-
parametric supervised learning method used for classification and regression. In
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regression cases, the model takes the output value from a specific number of its
nearest neighbors in the data, averages those values, and outputs that average.
This algorithm does not make assumptions, so it handles outliers and minimizes
error much better than decision trees and linear regression in many cases. This
model was chosen for this study due to its novel approach to ensemble learning,
high training speed, and high performance.

Elastic Net Regressor (ENR) Elastic Net is a regularized regression model
that combines l1 and l2 penalties, i.e., lasso and ridge regression [35]. By com-
bining both penalties, this model dramatically reduces overfitting. However, this
model also performs feature selection, removing unnecessary features from the
data. It was selected for this study because of its novel use of penalties and
feature selection.

3 Datasets

3.1 Dataset of Spectroscopy Images

For this study, we used the non-invasive blood glucose monitor prototype (“Glu-
cocheck”) presented in our previous work [32]. Images were chosen instead of
other forms of spectroscopy measurement, such as light intensity and PPG sig-
nals, because image capture is more replicable, accessible, and faster than other
methods of spectroscopy data collection. Spectroscopy images were collected
from the fingers of 43 participants between 18-65 years old. Two sets of 15 im-
ages were collected per participant. The first set was collected in a low-glucose
fasting state, while the second set was collected one hour following a meal. Blood
glucose was determined via finger prick using a commercial glucometer (FORA
6 Connect BG50) per manufacturer instructions. A set of 4 images is presented
in Fig. 3. The images were taken after the finger prick at seconds 8 (top left),
16 (top right), 24 (bottom left), and 32 (bottom right). All images were col-
lected from fingertips in the same format. A 640x480 resolution was chosen to
preserve small details without sacrificing computing time and resources. The
standard RGB color format was used. After removing any unclear images, the
final dataset consisted of 1128 samples, each with two features, the image, and
the corresponding blood glucose value.

3.2 Data Collection Ethics

The study was approved by the Institutional Review Board at Kennesaw State
University (IRB-FY22-318). All participants provided written consent before
participating.

3.3 Modified Datasets for CNN and Linear Models

Data transformation techniques were applied to the original data to generate
three datasets, as described below.
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Fig. 3. Example of finger spectroscopy images collected from one individual.

Image Tensor Dataset The “Tensor Dataset” was created in order to train
the CNN models (VGG16 and MobileNetV2). Tensors are multi-dimensional
matrices of numbers used in linear algebra; however, their application extends
to images since images are multi-dimensional matrices of numbers as well. An
image matrix consists of three dimensions: height, width, and color (red, green,
and blue).

To convert an image into a tensor, a three-dimensional matrix (tensor) is
created with the resolution of the image and the color format. Since images
used in this study were 640x480 using the RGB color format, the image tensor
was 640 pixels by 480 pixels by three colors. Then each color value for each
pixel was entered into each value in the tensor, obtaining a tensor of 921,600
values. The resulting image tensor dataset was maintained at 160x120 x 3 pixels
to decrease computational time and necessary resources, when compared to a
640x480 dataset. The final dataset included the tensors with their corresponding
blood glucose value. A visual demonstration of the image-tensor conversion can
be seen in Fig. 4.

Fig. 4. Demonstration of Image Tensor Conversion

CNN models are the only ones that can be trained with tensors because they
use filtering techniques to analyze and process them. These filtering techniques
are not available in other machine learning algorithms, which is why we used
the two CNN models MobileNetV2 and VGG16.

Color Intensity Datasets We have created four datasets based on extracting
color intensity from the original images. For each possible value of red, green,
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and blue (0-255), the number of pixels with that same value in an image can
be counted and recorded in a histogram [11]. Through this process, a histogram
with RGB values on the x-axis (256 possible values for red, green, and blue)
and the number of pixels on the y-axis can be created, as shown by Fig. 5. This
process of counting pixel-intensity values for each color was used to create three
datasets: “Red Intensity”, “Blue Intensity,” and “Green Intensity.” Each dataset
consists of 257 features: 256 features for each possible value of that color and
one feature for the blood glucose value of that image. Lastly, a final dataset,
named “RGB-Intensity”, was created by combining the intensity values for all
three-color channels. The RGB-Intensity dataset consisted of 769 features: 256
values of red, 256 values of green, 256 values of blue, and one value for blood
glucose [11].

Fig. 5. Histogram of RGB Intensity Values in an Image.

Image Measurement Datasets The last five datasets were created by extract-
ing measurement data from the images. To create the dataset, each image in the
dataset was split into four channels: red, green, blue, and grayscale (the image
with color removed). Then, for each color channel, the channel’s pixel center
of mass, minimum, maximum, mean, median, standard deviation, and variance
were calculated. To calculate these values: the images are first converted into
numerical tensors, then their tensors (3-dimensional matrix) are converted into
an array for each channel, and then each channel array (1-dimensional list) is
used for calculations such as mean, median, minimum, maximum, etc. A demon-
stration of this process can be seen in Fig. 6.

Values for each channel were compiled into the same dataset with the cor-
rect blood glucose value and repeated for every image. The resulting “Measure-
ment Dataset”, consisted of 29 features: seven measurements for each of the
four channels and one feature for the blood glucose. After the creation of this
dataset, four new datasets were created by merging the measurement features
of each image with the intensity values of the same image created in the previ-
ously mentioned intensity datasets. This process resulted in four new datasets:
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Fig. 6. Demonstration of Measurement Dataset Creation

“Red-Measurement”, “Green-Measurement”, “Blue-Measurement”, and “RGB-
Measurement”. The first three new datasets contained 285 features: 256 for the
pixel intensities, 28 for the measurement features, and one for the blood glucose
value. The last new dataset contained 797 features: 256 for each color channel,
28 measurement features, and one for the blood glucose value.

4 Experiment

After creating the datasets, each model was trained, tuned, and tested to each
dataset to compare results, with only two exceptions. Since they can only be
trained on tensor data, VGG16 and MobileNetV2 were only trained on the Ten-
sor Dataset. Furthermore, the other linear models can only be trained on scalar
data, so they were trained on every dataset except for the Tensor Dataset. The
CNN models were trained using image data generators, which come with the
TensorFlow library for Python that was used for training models. Moreover, be-
fore the training process, the image data generators were used to scale down the
pixel values from 0-255 to 0-1 to reduce error and GPU usage. Besides these
changes during training, the testing of CNN models was the same as the other
models. On another note, since the AdaBoost Ensemble Learning algorithm uses
another algorithm as a base estimator, for each dataset, the AdaBoost model
was trained with the model that had the highest accuracy for that dataset. A
summary of the models trained with each dataset can be seen in Table 1.

Table 1. Models Trained on Each Dataset

Tensor Dataset Intensity Dataset Measurement Dataset Intensity-Measurement Dataset

VGG16 Random Forest Random Forest Random Forest

MobileNetV2 Support Vector Support Vector Support Vector

Bayesian Ridge Bayesian Ridge Bayesian Ridge

XGBoost XGBoost XGBoost

HGB HGB HGB

AdaBoost AdaBoost AdaBoost

KNeighbors KNeighbors KNeighbors

Elastic Net Elastic Net Elastic Net

4.1 Training and Hyperparameter Tuning of Models

To train the models, all of the datasets were split into training/testing splits
where the training data was used to fit the model, and the testing data was used
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to measure the model’s performance. The training/testing split ratio was 75:25
to ensure sufficient data to train the models and ensure that they would not
overfit. After creating training/testing splits, each model in the set was fitted to
training data and then tested. However, to ensure that the models were compared
effectively, each model’s hyperparameters were tuned to each specific dataset to
minimize error and overfitting. After the models were finished with training and
tuning, they were tested, and the results were recorded in a table.

4.2 Testing Models

Three distinct metrics were considered for testing/tuning the models: MAE,
RMSE, and the Clarke Error Grid. The MAE is the mean of all errors between
the blood glucose values that a model predicts and the actual blood glucose value
tied to an image. The RMSE is the root of the mean of each error squared. MAE
is a more direct metric for calculating error as it is unbiased towards all errors and
treated as an average. However, because it squares the errors, RMSE is biased
against large prediction errors, making it weighted against outliers. RMSE is
usually used in scenarios when an increase in error is disproportionate to the
effect, for example, if the error increases from 5 to 10 and the effect is four times
as bad. Since RMSE is always higher or equal to MAE, the difference between
the two values is critical for evaluating outliers. If RMSE is significantly higher
than MAE, then there are outliers in the predictions. For this reason, RMSE
was used to tune the models to reduce overfitting but not recorded in the results
or evaluation. Lastly, Clarke Error Grids were used to evaluate models since
they have been widely used for several decades to evaluate the performance of
blood glucose meters. Clarke Error Grids are scatterplots with predicted blood
glucose values on the y-axis and actual blood glucose values on the x-axis. The
grid is split into several zones, and each zone signifies a level of risk of a negative
outcome due to the measurement error in blood glucose values which can be
seen in Fig 7

Fig. 7. Clarke Error Grid
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There are 5 zones: A - Accurate, B - Clinically Acceptable, C - Overcorrec-
tion, D - Failure to Detect/Treat, and E - Erroneous Treatment [8]. These three
metrics were all used when measuring the performance of the models during
training and testing.

5 Evaluation

For comparing the performance of the models we used MAE and Clarke Error
Grid (Zone A Percentage) metrics. The percentage of data points that fall into
each zone of the clinical outcome can be determined by analyzing the grid. To get
Zone A Percentage, the number of predictions in Zone A (Clinically Accurate)
is recorded as a percentage of the total number of predictions made. After the
models were trained and tuned, they were tested with the testing data, and the
results were recorded in Table 5 and Table 3 respectively.

Table 2. Model Testing Results from Tensor and Intensity Datasets - MAE and Zone
A percentages from clarke error grid analysis

Image Tensor (IT) Red-Intensity (RI) Green-Intensity (GI) Blue-Intensity (BI) RGB-Intensity (RGBI)

VGG16 16.58 - 87.59% - - - -

MobileNetV2 15.68 - 87.23% - - - -

Random Forest - 13.17 - 86.17% 13.31 - 85.11% 14.04 - 86.17% 12.46 - 88.65%

Elastic Net - 15.59 - 85.46% 16.23 - 82.27% 15.53 - 84.4% 14.42 - 84.4%

KNeighbors - 9.88 - 90.78% 14.06 - 88.3% 14.35 - 85.46% 10.84 - 88.65%

Support Vector - 14.43 - 89.36% 15.71 - 89.36% 14.3 - 89.36% 13.14 - 88.65%

Bayesian Ridge - 15.43 - 85.11% 16.01 - 83.33% 15.34 - 83.33% 14.28 - 84.4%

XGBoost - 12.93 - 87.94% 14.1 - 84.75% 13.97 - 84.75% 12.26 - 89.72%

HGB - 13.12 - 86.88% 14.99 - 84.04% 14.37 - 83.69% 12.53 - 87.59%

AdaBoost - 9.66 - 90.78% 13.31 - 87.94% 14.08 - 85.46% 10.95 - 88.65%

Table 3. Model Testing Results from Measurement Datasets - MAE and Zone A
percentages from clarke error grid analysis

Measurement (ME) Red-Measurement (RM) Green-Measurement (GM) Blue-Measurement (BM) RGB-Measurement (RGBM)

Random Forest 14.27 - 83.33% 12.85 - 87.23% 12.63 - 86.52% 13.91 - 85.82% 12.74 - 88.65%

Elastic Net 16.38 - 81.56% 15.68 - 84.04% 16.89 - 85.11% 15.55 - 81.56% 14.41 - 83.69%

KNeighbors 15.02 - 81.91% 9.55 - 90.78% 14.3 - 86.17% 15.81 - 84.4% 12.43 - 87.59%

Support Vector 16.13 - 89.72% 14.3 - 87.94% 15.02 - 89.01% 14.58 - 87.23% 13.28 - 87.94%

Bayesian Ridge 16.37 - 81.56% 15.52 - 84.04% 17.43 - 85.46% 15.52 - 82.62% 14.3 - 83.33%

XGBoost 14.51 - 83.69% 13.03 - 86.88% 12.86 - 88.3% 13.6 - 86.52% 12.89 - 87.59%

HGB 14.78 - 81.21% 13.71 - 85.11% 13.17 - 86.17% 13.7 - 85.11% 12.58 - 87.94%

AdaBoost 15.13 - 80.5% 9.4 - 90.78% 12.74 - 86.88% 13.41 - 87.59% 13.18 - 86.52%

6 Discussion

AdaBoost with KNeighbors trained on the Red-Measurement dataset provided
the most accurate estimates of blood glucose among all of the dataset-models
tested. This dataset-model combination had an MAE of 9.4 mg/dl, an RMSE of
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Fig. 8. Clarke Error Grid of AdaBoost model with KNeighbors Trained on Red-
Intensity Dataset

16.72 mg/dl, and a Clarke Error Grid Zone A Percentage of 90.78% illustrated
in Fig. 8.

From best to worst, the models ranked AdaBoost, KNeighbors, Random For-
est, XGBoost, HGB, Support Vector, Bayesian Ridge, Elastic Net, MobileNetV2,
and VGG16 as displayed in Fig. 9. From best to worst, the datasets ranked RGB
Intensity, Red Measurement, Red Intensity, RGB Measurement, Green Measure-
ment, Blue Intensity, Blue Measurement, Green Intensity, Measurement, and
Image Tensor as shown in Fig. 10. The datasets containing Red and RGB data
outperformed the other datasets by a large margin. However, combining mea-
surement and intensity values did not seem to improve performance for the red
dataset, but instead hindered it. Datasets with Blue and Green data appeared to
perform equally, but their performance was inferior to the Red and the combined
RGB overall. Furthermore, the Green data, but not the blue, seemed to perform
better after combining intensity and measurement data. The intensity datasets
performed better than the measurement datasets, and the dataset with only
measurement values performed significantly worse. The image tensor dataset
performed the worst of all datasets, while the CNN models performed the worst
among the group of models. AdaBoost and KNeighbors performed the best with
every dataset they were trained on, while XGBoost, Random Forest, and HGB
generally outperformed the other models. These results suggest that the best
data for blood glucose estimation by spectroscopy is color intensity data focused
on either the red channel or all three channels. The results further suggest that
the KNeighbors algorithm is well-suited for blood glucose estimation with scalar
data, and using AdaBoost as an ensemble learner can boost performance. Models
that use boosting and bagging (XGBoost, AdaBoost, HGB, etc.) outperformed
models that do not (Elastic Net, Bayesian Ridge, Support Vector). Furthermore,
the penalties and feature selection in Elastic Net and the binning in Histogram-
Based Gradient Boosting did not seem to increase performance compared to
bagging and boosting. Finally, both the dataset and model results suggest that
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Convolutional Neural Networks and Tensor datasets perform worse than Linear
Models, Ensemble Learners, and Scalar Data.

Fig. 9. Model Average MAE

Fig. 10. Dataset Average MAE

7 Conclusion

From training, tuning, and testing ten machine learning models on ten different
datasets, we have determined that the best model for estimating blood glucose
through spectroscopy images is AdaBoost trained with KNeighbors. Further-
more, the best image data to train the model is color intensity data collected
from the red channel. Our highest performing dataset and model recorded a
final Mean Absolute Error of 9.4, a Root Mean Squared Error of 16.72, and
a Clark Error Grid Zone A Percentage of 90.78%. We also showed that inten-
sity data outperformed measurement and tensor data, while the red and RGB
channels outperformed all other color channels. Furthermore, models that uti-
lize bagging and boosting outperformed those which did not, while linear models
outperformed CNN models, regardless of their support for bagging or boosting.
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